TD CALCUL TRIGONOMETRIQUE

EXERCICES D'PPLICATIONS ET DE REFLEXIONS

PROF: ATMANI NAJIB

corrections dans le site

1BAC SM BIOF

http:// xriadiat.e-monsite.com

TD-CALCUL TRIGONOMETRIQUE

Exercice1:1)Calculer $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$

2)Calculer
$$\cos \frac{5\pi}{12}$$
 et $\sin \frac{5\pi}{12}$

3) monter que :
$$\cos x = \cos \left(x + \frac{\pi}{3}\right) + \cos \left(x - \frac{\pi}{3}\right)$$

4) monter que :
$$\sin(x + \frac{2\pi}{3}) + \sin(x - \frac{2\pi}{3}) + \sin x = 0$$

Exercice2:

Soient: $0 \prec a \prec \frac{\pi}{2}$ et $0 \prec b \prec \frac{\pi}{2}$ et $\cos a = \sin b = \frac{1}{2}$

1)Calculer: $\sin a$ et $\cos b$

2) Calculer : $\sin(a+b)$

Exercice3: Calculer $\cos \frac{11\pi}{12}$ et $\sin \frac{11\pi}{12}$

Exercice4 :calculer $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$

Exercice5: Sachant que $\sin x = \frac{1}{2}$ et $0 < x < \frac{\pi}{2}$

calculer: c os(2x) et sin(2x)

Exercice6: Montrer que: $\frac{\sin 3x}{\sin x} - \frac{\cos 3x}{\cos x} = 2 \ \forall x \in \left]0; \frac{\pi}{2}\right[$

Exercice7: Montrer que:

1)
$$1 - \cos x + \sin x = 2\sin\frac{x}{2}\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)$$

2)si $\alpha \in \mathbb{R}$ et $\sin \alpha \neq -1$ alors

$$\frac{1-\sin\alpha}{1+\sin\alpha} = \tan^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$$

Exercice8: Montrer que : $\forall x \in \mathbb{R}$

1) $\sin^2 2x - \cos 2x - 1 = -2\cos^2 x \times \cos 2x$

2) $2\sin^2 x + 12\cos^2 x = 5\cos 2x + 7$

Exercice10: Calculer $\tan \frac{11\pi}{12}$

Exercice11:

1- Résoudre dans \mathbb{R} l'équation $x^2 + 2x - 1 = 0$

2- En déduire $tan \left(\frac{\pi}{8}\right)$

Prof/ATMANI NAJIB

Exercice12: soit $a \in \mathbb{R}$ tel que : $\tan \frac{a}{2} = \sqrt{2}$

Calculer $\cos a$ et $\sin a$ et $\tan a$

Exercice13:1- Montrer que $tan\left(\frac{\pi}{12}\right) = 2 - \sqrt{3}$

2- Considérons l'équation :

(E):
$$2\cos x - 2\sin x - 1 - \sqrt{3} = 0$$

a) Vérifier que π + $2k\pi$ n'est pas une solution de l'équation (E)

b) en posant : $t = tan(\frac{x}{2})$, résoudre l'équation (E)

(remarquer que $4-2\sqrt{3}=(\sqrt{3}-1)^2$

3- Représenter les images des solutions sur le cercle trigonométrique.

Exercice14: Transformer en produits les expressions suivantes :

1)
$$A(x) = \sin 2x + \sin 4x$$

2)
$$B(x) = \cos x + \cos 2x + \cos 3x + \cos 4x$$

Exercice15 : Résoudre dans ℝ l'équation :

sinx + sin3x + sin5x + sin7x = 0

Exercice16: écrire sous la forme d'une somme

1) $\cos 2x \times \sin 4x$ 2) $\sin x \times \sin 3x$ 3) $\cos 4x \times \cos 6x$

Exercice17: calculer

1)
$$\cos \frac{7\pi}{12} \times \cos \frac{5\pi}{12}$$
 2) $\sin \frac{7\pi}{12} \times \cos \frac{5\pi}{12}$

Exercice18: Montrer que

1)
$$\sin \frac{3\pi}{11} + \sin \frac{7\pi}{11} = 2 \sin \left(\frac{5\pi}{11} \right) \cos \left(\frac{2\pi}{11} \right)$$

2)
$$\sin \frac{3\pi}{11} - \sin \frac{7\pi}{11} = -2\cos \left(\frac{5\pi}{11}\right) \sin \left(\frac{2\pi}{11}\right)$$

3) en déduire que:
$$\frac{\sin \frac{3\pi}{11} + \sin \frac{7\pi}{11}}{\sin \frac{3\pi}{11} - \sin \frac{7\pi}{11}} = -\frac{\tan \left(\frac{5\pi}{11}\right)}{\tan \left(\frac{2\pi}{11}\right)}$$

Exercice19: Montrer que $\frac{\cos 2x - \cos 4x}{\cos 2x + \cos 4x} = \tan 3x \times \tan x$

Exercice20: Montrer que $\forall x \in \mathbb{R}$

$$\cos^2 \frac{5x}{2} - \cos^2 \frac{3x}{2} = -\sin 4x \times \sin x$$

Exercice21: Montrer que $\forall x \in \mathbb{R}$

1)
$$\sin 3x = \sin x \times (3 - 4\sin^2 x)$$

2)
$$\cos 3x = \cos x (4\cos^2 x - 3)$$

3) $c \cos(4x) = 8\cos^4 x - 8\cos^2 x + 1$

4) $\sin(4x) = 4\sin x (2\cos^3 x - \cos x)$

5)
$$\cos^3 x = \frac{1}{4} (3\cos x + \cos 3x)$$

Exercice22: $P(x) = \sin 2x - \sin x$ et $Q(x) = 1 + \cos x + \cos 2x$

Montrer que : $P(x) = \sin x (2\cos x - 1)$ et

 $Q(x) = \cos x (2\cos x + 1)$

Exercice23:1- Linéariser: $2\cos^2 x$. $\sin(2x)$

2- Linéariser : $\cos^3 x$

Exercice24 :1. Résoudre dans ℝ l'équation :

$$cos(2x + \frac{\pi}{4}) = -\frac{\sqrt{3}}{2}$$

Représenter les images des solutions sur le cercle trigonométrique.

2. Résoudre dans ℝ l'équation :

$$\cos\left(x+\frac{\pi}{4}\right)=\sin\left(3x-\frac{\pi}{6}\right)$$

Déterminer les solutions dans l'intervalle] – π , π] **Exercice25 :**

1. Résoudre dans \mathbb{R} l'équation : $sin(3x + \frac{\pi}{6}) = -\frac{\sqrt{2}}{2}$

Représenter les images des solutions sur le cercle trigonométrique.

2. Résoudre dans R l'équation :

$$-\cos\left(3x+\frac{\pi}{3}\right)=\sin\left(x-\frac{\pi}{6}\right)$$

Déterminer les solutions dans l'intervalle] – π , π] **Exercice26**:

- 1) Résoudre dans \mathbb{R} , l'équation tan $(2x + \frac{\pi}{6}) = -1$
- 2) Résoudre dans \mathbb{R} , l'équation $\cos x \sqrt{3} \sin x = 0$

Exercice27 :1) Résoudre dans \mathbb{R} l'équations

suivantes:
$$\cos 2x = \cos \left(x - \frac{\pi}{3}\right)$$

2) Résoudre dans $[0;\pi]$ l'équations suivantes :

$$\sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4} - x\right)$$

3) Résoudre dans $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ l'équations suivantes :

$$\tan\left(2x-\frac{\pi}{5}\right)=1$$

Exercice28: $\cos x - \sin x$ a=1 et b=-1

calculons:
$$\sqrt{a^2 + b^2} = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$

$$\cos x - \sin x = \sqrt{2} \left(\frac{\sqrt{2}}{2} \cos x - \frac{\sqrt{2}}{2} \sin x \right) = \sqrt{2} \left(\cos \frac{\pi}{4} \cos x - \sin \frac{\pi}{4} \sin x \right)$$

$$\cos x - \sin x = \sqrt{2} \cos \left(\frac{\pi}{4} + x \right)$$

Exercice29: Résoudre dans $[0;2\pi]$ l'équation :

$$\sqrt{3}\cos x + \sin x = \sqrt{3}$$

Exercice30 : Résoudre dans ℝ l'équation :

$$\sqrt{3}\cos(3x) + \sin(3x) + 2 = 0$$

Exercice31: Résoudre dans $[-\pi; \pi]$ l'inéquation

$$\cos x \ge \frac{1}{2}$$

Exercice32 : Résoudre dans $[0,3\pi]$ l'inéquation :

$$2\cos x + \sqrt{3} \le 0$$

Exercice33: Résoudre dans $[0,2\pi[$ l'inéquation

$$\sin x \ge \frac{1}{2}$$

Exercice34: Résoudre dans $[0; 2\pi]$ l'inéquation

suivante : $\tan x - 1 \ge 0$

Exercice35: Résoudre dans $[-\pi; \pi]$ l'inéquation

suivante :
$$3 \tan x - \sqrt{3} \ge 0$$

Exercice36: 1)Résoudre dans $[-\pi,\pi]$ l'équation :

$$\sqrt{3}\cos x - \sin x = 1$$

2) Résoudre dans $[-\pi;\pi]$ l'inéquation :

$$\sqrt{3}\cos x - \sin x \ge 1$$

Exercice37 : 1) a)Résoudre dans $\mathbb R$ l'équations

suivantes : $2\sin^2 x - 9\sin x - 5 = 0$ et en déduire les solutions dans $[0; 2\pi]$

b) résoudre dans $[0\,;2\pi]$ l'inéquation suivante :

$$2\sin^2 x - 9\sin x - 5 \le 0$$

2)Résoudre dans $[0;\pi]$ l'inéquation suivante :

$$(2\cos x - 1)(\tan x + 1) \ge 0$$

Exercice38 : 1. Résoudre dans $[-\pi, \pi]$ l'inéquation :

$$\sin\left(3x + \frac{\pi}{4}\right) \le -\frac{1}{2}$$

2. Résoudre dans $[-\pi, \pi]$ l'inéquation :

$$4\cos^2 x - 2(1 + \sqrt{2})\cos x + \sqrt{2} \le 0$$

3. Résoudre dans $[-\pi, \pi]$ l'inéquation : $\frac{1 + \tan x}{\sin 2x} \ge 0$

Exercice39:

Résoudre dans $\left[-\frac{11\pi}{5}, \frac{14\pi}{5}\right]$ l'équation $\sin 3x \ge \frac{1}{2}$

Exercice40 :: soit $x \in \mathbb{R}$ on pose :

$$A(x) = \cos 3x - 3\sin x + 3\sqrt{2}\sin\left(x + \frac{\pi}{4}\right)$$

1) calculer $\cos 3x$ en fonction de $\cos x$

Et calculer $\sin\left(x + \frac{\pi}{4}\right)$ en fonction de $\cos x$ et $\sin x$

2) en déduire une écriture simple de A(x)

3)a)Résoudre dans $I = [-\pi, \pi]$ l'équations: $A(x) = \frac{1}{2}$

3)b) Résoudre dans I l'inéquations: $A(x) \le \frac{1}{2}$

Exercice41: on pose:

$$A = \sin\frac{\pi}{9} \times \sin\frac{2\pi}{9} \times \sin\frac{3\pi}{9} \times \sin\frac{4\pi}{9}$$

1) monter que : $\sin \frac{\pi}{9} \times \sin \frac{4\pi}{9} = \frac{1}{2} \left(\frac{1}{2} - \cos \frac{5\pi}{9} \right)$

2) monter que : $\cos \frac{5\pi}{9} \times \sin \frac{2\pi}{9} = \frac{1}{2} \left(\sin \frac{7\pi}{9} - \frac{\sqrt{3}}{2} \right)$

3) en déduire que : $A = \frac{3}{16}$

Exercice 42: soit : $\theta \in \left]0; \frac{\pi}{2}\right[\text{ tel que : } 3\sin\theta + 5\cos\theta = 5$

1) monter que : $5\sin\theta - 3\cos\theta = 3$

2) déduire la valeur de : $\cos \theta$ et $\sin \theta$

C'est en forgeant que l'on devient forgeron » Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

