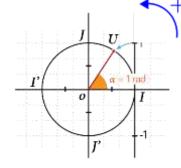
TRIGONOMÉTRIE1 Résumé de Cours

I) Le radian et le cercle trigonométrique :

1) Soit un cercle C de centre O et de rayon 1.

On appelle <u>radian</u>, noté *rad*, la mesure de l'angle au centre qui intercepte un arc de longueur 1 du cercle.

2) On appelle cercle trigonométrique tout cercle de centre O et de rayon 1 muni d'un point d'origine I et d'un sens de parcours appelé direct (sens contraire au sens des aiguilles d'une montre)



- 3) Les mesures en radian et en degré d'un même angle sont proportionnelles
- Si x est la mesure d'un angle en radian et y sa mesure en degré alors : $\frac{x}{\pi} = \frac{y}{180}$

4) Correspondance degrés et radians

Ainsi, à 2π radians (tour complet), on fait correspondre un angle de 360° .

Par proportionnalité, on obtient les correspondances suivantes :

Mesure en radians x rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π
Mesure en degrés y [⊙]	0	30°	45°	60°	90°	180°	360°

II) Les abscisse curviligne d'un point sur le cercle trigonométrique

1) Soit M un point du cercle trigonométrique d'origine I

Et soit α la longueur de l'arc IM (on allant de I vers M dans le sens direct) en radian

Tout réel qui s'écrit sous la forme : $\alpha + 2k\pi$ avec $k \in \mathbb{Z}$ s'appelle abscisse curviligne de M

2) Si x et x' deux abscisses curvilignes du même point M dans le cercle trigonométrique alors il existe un $k \in \mathbb{Z}$ tel que : $x - x' = 2k\pi$ on écrit : $x \equiv x' \lceil 2\pi \rceil$:Et on lit : x est congrue a x' modulo 2π

3) Abscisse curviligne principale :

Parmi les abscisses curvilignes d'un point M du cercle trigonométrique une seule se situe dans l'intervalle $]-\pi$; π] et on l'appelle abscisse curviligne principale.

III)) Relation de Chasles pour les angles orientés de deux demi-droites et de vecteurs

1) Soit [Ox) et [Oy) et [Oz) trois demi-droites d'origine O

On a:
$$\overline{(Ox;Oy)} + \overline{(Oy;Oz)} = \overline{(Ox;Oz)}[2\pi]$$

 $\overline{(Ox;Oy)} = -\overline{(Oy;Ox)}[2\pi]$

- 2) l'angle orienté des vecteurs non nuls \vec{v} et \vec{v} dans cet ordre est l'angle noté : $(\vec{v}; \vec{v})$
- 3) Pour des vecteurs non nuls, on a :

a)
$$(\vec{u}; \vec{u}) \equiv 0[2\pi]$$
 b) $(\vec{u}; -\vec{u}) \equiv \pi[2\pi]$

c)
$$(\vec{u}; \vec{v}) + (\vec{v}; \vec{w}) \equiv (\vec{u}; \vec{w})[2\pi]$$
 relation de Chasles

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Et on a:
$$(\vec{u}; \vec{v}) = -(\vec{v}; \vec{u}) + 2k\pi$$
 et $(-\vec{u}; \vec{v}) = (\vec{u}; \vec{v}) + \pi + 2k\pi$ et $(-\vec{u}; -\vec{v}) = (\vec{u}; \vec{v}) + 2k\pi$ et $(\vec{u}; -\vec{v}) = (\vec{u}; \vec{v}) + \pi + 2k\pi$

IV) Les rapports trigonométriques d'un nombre réel.

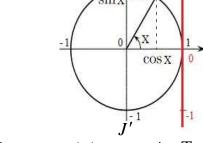
1) Soit (C) un cercle trigonométrique de centre O et d'origine I

Soit $x \in \mathbb{R}$ il existe un point M de (C) unique tel que xest une abscisse curviligne de M

Soit C le projeté orthogonal de M sur (OI)

Et soit S le projeté orthogonal de M sur (OJ)

- Le cosinus du nombre réel x est l'abscisse de M Et on note $\cos x$.
- Le sinus du nombre réel x est l'ordonnée de M Et on note **sin** *x*.
- Soit (Δ) la droite tangente a (C) en I



Rayon du cercle = 1 Angle X en degrés ou en radians

- -1 < sin X < +1
- -1 < cos X < +1
- 00 < tan X < + 00

Si $M \neq J$ et $M \neq J'$ alors la droite (OM) coupe la tangente (Δ) en un point T

Le nombre réel \overline{IT} l'abscisse de T sur l'axe (Δ) est La tangente du nombre réel x et on note $\tan x$.

Remarque:

- \checkmark Les rapports trigonométriques : $\cos x$ et $\sin x$ et $\tan x$. sont aussi appelés cosinus et sinus et tangente de l'angle orienté $(\overrightarrow{OI}; \overrightarrow{OM})$
- ✓ tan x existe si et seulement si : $x \neq \frac{\pi}{2} + k \pi$ avec $k \in \mathbb{Z}$
- ✓ La cotangente de x est le nombre réel x noté cotant x et on a : cotan $x = \frac{1}{1}$

2) Cosinus, sinus et tangente d'angles remarquables :

v	osinus, sinus et tangente a angles remarquables.									
	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π			
	$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1			
	$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0			

3) **Propriétés :** Pour tout nombre réel x, on a :

- 1) $-1 \le \cos x \le 1$

- 2) $-1 \le \sin x \le 1$ 3) $\cos^2 x + \sin^2 x = 1$ 4) $\cos x = \cos(x + 2k\pi)$ où $k \in \mathbb{Z}$
- 5) $\sin x = \sin(x + 2k\pi)$ où k entier relatif 6) si $x \neq \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$: $\tan x = \frac{\sin x}{\cos x}$
- 7) si $x \neq \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$ alors : $\tan(x + k\pi) = \tan x$
- 8): $1 + (\tan x)^2 = \frac{1}{(\cos x)^2}$ si $x \neq \frac{\pi}{2} + k\pi$
- 9) $\cos(-x) = \cos x$ et $\sin(-x) = -\sin x$
- 10) $\cos(\pi + x) = -\cos x$ et $\sin(\pi + x) = -\sin x$
- 11) $\cos(\pi x) = -\cos x$ et $\sin(\pi x) = \sin x$
- 12) $\cos\left(\frac{\pi}{2} + x\right) = -\sin x$ et $\sin\left(\frac{\pi}{2} + x\right) = \cos x$

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

13)
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
 et $\sin\left(\frac{\pi}{2} - x\right) = \cos x$

14) $\tan(\pi - x) = -\tan x$ et $\tan(\pi + x) = \tan x$ si $x \neq \frac{\pi}{2} + k\pi$

V) Signe de Cosinus, sinus

•
$$Si_{-\frac{\pi}{2} \le x \le \frac{\pi}{2}}$$
 alors $\cos x \ge 0$

•
$$Si \frac{\pi}{2} \le x \le \frac{3\pi}{2}$$
 alors $\cos x \le 0$

•
$$Si \ 0 \le x \le \pi \text{ alors } \sin x \ge 0$$

•
$$Si \pi \le x \le 2\pi \text{ alors } \sin x \le 0$$

$$\cos\left(\frac{\pi}{2}\right) = 0 \qquad \sin\left(\frac{\pi}{2}\right) = 1$$

$$x \in \left]\frac{\pi}{2}; \pi\right[$$

$$-1 < \cos(x) < 0 \qquad 0 < \cos(x) < 1$$

$$0 < \sin(x) < 1 \qquad 0 < \sin(x) < 1$$

$$\sin(\pi) = 0$$

$$-1 < \cos(x) < 0 \qquad 0 < \cos(x) < 1$$

$$0 < \sin(x) < 1 \qquad \cos(0) = 1$$

$$\sin(0) = 0$$

$$-1 < \sin(x) < 0$$

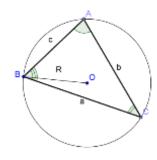
$$x \in \left]-\pi, -\frac{\pi}{2}\right[$$

$$\cos\left(-\frac{\pi}{2}\right) = 0 \qquad \sin\left(-\frac{\pi}{2}\right) = -1$$

Loi des sinus : ABC triangle tel que : AB = c et AC = b et BC = a S est l'aire du triangle ABC, R est le rayon du cercle circonscrit à ABC

On a la Loi des sinus :
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = \frac{2S_{ABC}}{abc} = \frac{1}{2R}$$
 d'où $abc = 4RS_{ABC}$

La formule de l'aire :
$$S_{ABC} = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin C$$



Remarque : la Loi des sinus : peut être utilisée :

• Soit pour calculer la longueur d'un côté, lorsque le triangle est donné par 2 angles et un côté ;

• Soit pour calculer un angle si le triangle est donné par 2 longueurs et un angle opposé à l'un des côtés précédents.

Exemple : Calcul de la longueur d'un côté

Soit à calculer AC dans ce triangle :

D'après la loi des sinus, On obtient :
$$\frac{\sin B}{b} = \frac{\sin C}{c}$$
 donc : $\frac{\sin 67^{\circ}}{b} = \frac{\sin 33^{\circ}}{5}$

Donc:
$$b \sin 33^{\circ} = 5 \sin 67^{\circ}$$
 c'est-à-dire: $b = \frac{5 \sin 67^{\circ}}{\sin 33^{\circ}}$

Par suite : $AC \approx 8,45$

