Exercices avec solutions TRIGONOMÉTRIE2

Partie 2 : Equations et inéquations trigonométriques

Types d'exercices : Application directe du cours (*) Difficulté moyenne (**) Demande une réflexion (***)

Exercice 1 : (*) A l'aide d'un cercle trigonométrique seulement, donner toutes les valeurs possibles de x vérifiant les conditions données.

1)
$$\cos x = \frac{1}{2}$$
 et $\sin x = -\frac{\sqrt{3}}{2}$ avec : $x \in]-\pi, \pi]$

2)
$$\cos x = \frac{\sqrt{2}}{2}$$
 et $\sin x = \frac{\sqrt{2}}{2}$ avec : $x \in]-\pi,\pi]$

3)
$$\cos x = -\frac{\sqrt{3}}{2}$$
 et $\sin x = -\frac{1}{2}$ avec : $x \in [-\pi, 3\pi]$

4)
$$\cos x = 0$$
 et $\sin x = -1$ avec : $x \in [-2\pi, 3\pi]$

Solution: 1)
$$x = -\frac{\pi}{3}$$
 2) $x = \frac{\pi}{4}$

3)
$$x \in \left\{ -\frac{5\pi}{6}; \frac{7\pi}{6} \right\}$$
 4) $x \in \left\{ -\frac{\pi}{2}; \frac{3\pi}{2} \right\}$

Exercice 2: (**) Résoudre dans \mathbb{R} les équations suivantes

a)
$$\cos x = \frac{\sqrt{2}}{2}$$
 b) $\cos x = -\frac{1}{2}$ c) $\cos^2 x = \frac{1}{2}$

Solution: a)
$$\cos x = \frac{\sqrt{2}}{2}$$

On sait que :
$$\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$
 donc on a : $\cos x = \cos \frac{\pi}{4}$

Donc l'ensemble des solutions de l'équation dans

$$\mathbb{R} \text{ est}: S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + 2k\pi; -\frac{\pi}{4} + 2k\pi / k \in \mathbb{Z} \right\}$$

b)
$$\cos x = -\frac{1}{2}$$
 Équivaut à : $\cos x = -\cos \frac{\pi}{3}$

Équivaut à:
$$\cos x = \cos \left(\pi - \frac{\pi}{3} \right)$$

C'est-à-dire :
$$\cos x = \cos\left(\frac{2\pi}{3}\right)$$

Donc les solutions de l'équation dans \mathbb{R}

Sont:
$$S_{\mathbb{R}} = \left\{ \frac{2\pi}{3} + 2k\pi; -\frac{2\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

c)
$$\cos^2 x = \frac{1}{2}$$
 Équivaut à : $\cos^2 x - \frac{1}{2} = 0$

Équivaut à :
$$\left(\cos x - \frac{\sqrt{2}}{2}\right) \left(\cos x + \frac{\sqrt{2}}{2}\right) = 0$$

Équivaut à :
$$\cos x = \frac{\sqrt{2}}{2}$$
 ou $\cos x = -\frac{\sqrt{2}}{2}$

C'est-à-dire :
$$\cos x = \cos \frac{\pi}{4}$$
 ou $\cos x = \cos \frac{3\pi}{4}$

Ainsi:
$$S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + 2k\pi; -\frac{\pi}{4} + 2k\pi; \frac{3\pi}{4} + 2k\pi; -\frac{3\pi}{4} + 2k\pi \right\}$$

avec $k \in \mathbb{Z}$

Exercice 3: (*) (**) Résoudre dans \mathbb{R} les équations

suivantes : a)
$$\sin x = \frac{\sqrt{3}}{2}$$
 b) $\sin x = -\frac{1}{2}$ c) $\sin^2 x = \frac{1}{2}$

Solution: a)
$$\sin x = \frac{\sqrt{3}}{2}$$
 Équivaut à : $\sin x = \sin \frac{\pi}{3}$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{3} + 2k\pi; \pi - \frac{\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

C'est-à-dire:
$$S_{\mathbb{R}} = \left\{ \frac{\pi}{3} + 2k\pi; \frac{2\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

b)
$$\sin x = -\frac{1}{2}$$
 Équivaut à : $\sin x = -\sin \frac{\pi}{6}$

Équivaut à :
$$\sin x = \sin\left(-\frac{\pi}{6}\right)$$

Équivaut à :
$$-\frac{\pi}{6} + 2k\pi$$
 et

$$\pi - \left(-\frac{\pi}{6}\right) + 2k\pi = \frac{7\pi}{6} + 2k\pi$$
 où $k \in \mathbb{Z}$

Donc les solutions de l'équation dans \mathbb{R}

Sont:
$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{6} + 2k\pi; \frac{7\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\}$$

c)
$$\sin^2 x = \frac{1}{2}$$
 Équivaut à : $\sin^2 x - \frac{1}{2} = 0$

Équivaut à :
$$\left(\sin x - \frac{\sqrt{2}}{2}\right) \left(\sin x + \frac{\sqrt{2}}{2}\right) = 0$$

Équivaut à :
$$\sin x = \frac{\sqrt{2}}{2}$$
 ou $\sin x = -\frac{\sqrt{2}}{2}$

C'est-à-dire :
$$\sin x = \sin \frac{\pi}{4}$$
 ou $\sin x = \sin \left(-\frac{\pi}{4}\right)$

Équivaut à :
$$x = \frac{\pi}{4} + 2k\pi$$
 ou $x = \pi - \frac{\pi}{4} + 2k\pi$

Ou
$$x = -\frac{\pi}{4} + 2k\pi$$
 ou $x = \pi - \left(-\frac{\pi}{4}\right) + 2k\pi$: $k \in \mathbb{Z}$

Ainsi :
$$S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + 2k\pi ; -\frac{\pi}{4} + 2k\pi ; \frac{5\pi}{4} + 2k\pi ; \frac{3\pi}{4} + 2k\pi \right\}$$

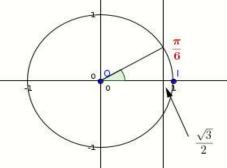
avec $k \in \mathbb{Z}$

Exercice 4: (*) (**) Résoudre dans $]-\pi,\pi]$

l'équation :
$$\cos 2x = \frac{\sqrt{3}}{2}$$
.

abscisses

Solution: Étape 1 : Utiliser le cercle trigonométrique et/ou le tableau de valeurs remarquables afin de retrouver <u>une</u> valeur dont le cosinus vaut $\frac{\sqrt{3}}{2}$:Le cosinus se lit sur l'axe des



On peut dire que : $\frac{\sqrt{3}}{2}$ est le cosinus de $\frac{\pi}{6}$ par exemple.

Étape 2 : Utiliser ce résultat pour écrire l'équation proposée sous la forme " $\cos U = \cos V$ "

$$\cos 2x = \frac{\sqrt{3}}{2}$$
 Équivaut à : $\cos 2x = \cos \frac{\pi}{6}$

On applique alors la propriété

Donc on a:
$$2x = \frac{\pi}{6} + 2k\pi$$
 ou $2x = -\frac{\pi}{6} + 2k'\pi$

Je divise par 2 chaque membre de chaque égalité, j'obtiens

$$x = \frac{\pi}{12} + k\pi$$
 ou $x = -\frac{\pi}{12} + k'\pi$ avec $k \in \mathbb{Z}$ et $k' \in \mathbb{Z}$

• Étape3 :Mais il ne va falloir garder que les valeurs de ** dans l'intervalle imposé c'est à dire

dans
$$]-\pi,\pi]$$

on a deux méthodes soit encadrement ou on donnant des valeurs a k

Pour la première série de

valeurs
$$x = \frac{\pi}{12} + k\pi$$
 avec k dans **Z**

Prenons par exemple la valeur k = -2 et

remplaçons on obtient
$$x = \frac{\pi}{12} - 2\pi$$
; cette valeur

n'appartient pas à $]-\pi,\pi]$; il est donc évident que des valeurs de k inférieures à -2 ne conviendront pas non plus.

Par contre, si je choisis k = -1:

On a:
$$x = \frac{\pi}{12} - \pi$$
; cette valeur appartient à $]-\pi,\pi]$.

Il s'agit donc de trouver toutes les valeurs de k telles que les solutions trouvées appartiennent bien à l'intervalle imposé, en appliquant cette démarche de manière systématique.

pour
$$k = -1$$
 $x_1 = \frac{\pi}{12} - \pi = -\frac{11\pi}{12}$ convient car appartient à $]-\pi,\pi]$

pour
$$k = 0$$
 $x_2 = \frac{\pi}{12}$ convient car appartient à $]-\pi,\pi]$

pour
$$k=1$$
 $x = \frac{\pi}{12} + \pi = \frac{13\pi}{12}$ ne convient pas car

n'appartient pas à $]-\pi,\pi]$

Il est inutile de poursuivre pour la première série de valeur (car si pour k=1, la valeur trouvée n'appartient plus à l'intervalle, il en sera de même a fortiori pour des valeurs supérieures de k)

Faisons de même pour la deuxième série de valeurs

$$x = -\frac{\pi}{12} + k'\pi$$
 avec k' dans **Z**

pour
$$k' = -1$$
 $x = -\frac{\pi}{12} - \pi = -\frac{13\pi}{12}$ ne convient pas

car n'appartient pas à $]-\pi,\pi]$

pour
$$k' = 0$$
: $x_3 = -\frac{\pi}{12}$ convient car appartient à $]-\pi,\pi]$

pour
$$k'=1$$
 $x=-\frac{\pi}{12}+\pi=\frac{11\pi}{12}$ convient pas car

appartient à
$$]-\pi,\pi]$$

pour
$$k'=2$$
: $x=-\frac{\pi}{12}+2\pi$ ne convient pas car

n'appartient pas à
$$]-\pi,\pi]$$

Tronc commun Sciences BIOF

Donc L'ensemble solution de l'équation dans

$$]-\pi,\pi]$$
 est donc: $S = \left\{-\frac{11\pi}{12}; -\frac{\pi}{12}; \frac{\pi}{12}; \frac{11\pi}{12}\right\}$

Exercice 5: (*) Soit l'équation :
$$-\sin x - \frac{\sqrt{2}}{2} = 0$$

Trouvez les solutions de l'équation dans l'intervalle $[0,4\pi]$.

Solution: On isole l'expression trigonométrique.

$$-2\sin x - \sqrt{2} = 0$$
 Équivaut à : $-2\sin x = \sqrt{2}$

C'est-à-dire :
$$\sin x = -\frac{\sqrt{2}}{2}$$
.

Équivaut à :
$$\sin x = -\sin\left(\frac{\pi}{4}\right)$$
 (on utilise le tableau)

Équivaut à :
$$\sin x = \sin\left(-\frac{\pi}{4}\right)$$

(On peut aussi utiliser le cercle trigonométrique)

Ainsi:
$$x = -\frac{\pi}{4} + 2k\pi$$
 ou $x = \pi - \left(-\frac{\pi}{4}\right) + 2k\pi$ avec: $k \in \mathbb{Z}$

Équivaut à :
$$x = -\frac{\pi}{4} + 2k\pi$$
 ou $x = \frac{5\pi}{4} + 2k\pi$ avec: $k \in \mathbb{Z}$

On s'intéresse maintenant aux solutions situées dans l'intervalle $[0,4\pi]$

Pour obtenir toutes les solutions demandées On remplace *k* par 0 et par 1:

Donc l'ensemble des solutions de l'équation dans

[0,4
$$\pi$$
] est donc $S = \left\{ \frac{5\pi}{4}; \frac{7\pi}{4}; \frac{13\pi}{4}; \frac{15\pi}{4} \right\}$

(On peut aussi faire des encadrements pour trouver toutes les solutions demandées).

Exercice 6: (*) **1**) Résoudre dans \mathbb{R} l'équation suivante : b tan $x = \sqrt{3}$.

2) Résoudre dans $]-\pi$; π] l'équation suivante : $\tan x = \sqrt{3}$.

Solution:1) On a : $\tan x = \sqrt{3}$ est définie dans \mathbb{R}

Équivaut à :
$$x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\}$$
 avec ; $k \in \mathbb{Z}$

On sait que :
$$\tan \frac{\pi}{3} = \sqrt{3}$$
 donc : $\tan x = \tan \frac{\pi}{3}$

Équivaut à :
$$x = \frac{\pi}{3} + k\pi; k \in \mathbb{Z}$$

Donc L'ensemble de solution de l'équation dans \mathbb{R}

est:
$$S = \left\{ \frac{\pi}{3} + k\pi; k \in \mathbb{Z} \right\}$$

2) Résolution dans $]-\pi$; π] l'équation: $\tan x = \sqrt{3}$

$$\tan x = \sqrt{3}$$
 Équivaut à : $x = \frac{\pi}{3} + k\pi; k \in \mathbb{Z}$

Donc les seules valeurs dans $]-\pi;\pi]$ sont :

$$x = \frac{\pi}{3}$$
 et $x = \frac{\pi}{3} - \pi = -\frac{2\pi}{3}$

Par suite :
$$S = \left\{-\frac{2\pi}{3}; \frac{\pi}{3}\right\}$$

Exercice 7: (**) Résoudre dans \mathbb{R} l'équation suivante $\sin^2 x = 1$

Solution: On effectue la racine carrée de chaque côté de l'égalité et on obtient:

$$\sin x = 1$$
 ou $\sin x = -1$

En regardant dans le cercle trigonométrique, on trouve que:

$$\sin x = 1$$
 Équivaut à : $x = \frac{\pi}{2} + 2k\pi$

$$\sin x = -1$$
 Équivaut à : $x = \frac{3\pi}{2} + 2k\pi$

Donc L'ensemble solution de l'équation dans \mathbb{R} est :

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{2} + 2k\pi ; \frac{3\pi}{2} + 2k\pi \right\} avec \ k \in \mathbb{Z}$$

Exercice 8: (*) (**) **1**) Résoudre dans \mathbb{R} l'équation suivante $4\tan x + 4 = 0$

2) Résoudre dans $\left[-\pi,\pi\right]$ l'équation suivante :

$$2\cos 2x + \sqrt{3} = 0$$

3) Résoudre dans
$$\left[-\frac{\pi}{2}; \frac{5\pi}{2}\right]$$
 l'équation suivante :

$$2\sqrt{2}\sin x + 2 = 0$$

Solution: 1) On a $4\tan x + 4 = 0$ est définie dans \mathbb{R}

Équivaut à :
$$x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\}$$
 avec $k \in \mathbb{Z}$

Donc
$$D = \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$

$$4\tan x + 4 = 0$$
 Équivaut à : $\tan x = -1$

Équivaut à :
$$\tan x = -\tan \frac{\pi}{4}$$

C'est-à-dire :
$$\tan x = \tan \left(-\frac{\pi}{4}\right)$$

Donc les solutions de l'équation dans $\mathbb R$

Sont:
$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{4} + k\pi / k \in \mathbb{Z} \right\}$$
.

2)
$$2\cos 2x + \sqrt{3} = 0$$
 Equivaut à : $\cos 2x = -\frac{\sqrt{3}}{2}$

Tronc commun Sciences BIOF

Équivaut à : $\cos 2x = -\cos \frac{\pi}{6}$

C'est-à-dire : $\cos 2x = \cos \left(\pi - \frac{\pi}{6} \right)$

Équivaut à : $2x = \frac{5\pi}{6} + 2k \pi$ ou $2x = -\frac{5\pi}{6} + 2k \pi$

Équivaut à : $x = \frac{5\pi}{12} + k\pi$ ou $x = -\frac{5\pi}{12} + k\pi$ avec: $k \in \mathbb{Z}$

• Encadrement de $x = \frac{5\pi}{12} + k\pi$:

 $-\pi \leq \frac{5\pi}{12} + k \pi < \pi$ et $k \in \mathbb{Z}$

Equivaut à: $-1 \le \frac{5}{12} + k < 1$ donc : $-1 - \frac{5}{12} \le k < 1 - \frac{5}{12}$

C'est-à-dire : $-\frac{17}{12} \le k < \frac{7}{12}$

Par suite: k = 0 ou k =

Si k = 0 alors: $x = \frac{5\pi}{12} + 0\pi = \frac{5\pi}{12}$

Si k = -1 alors: $x = \frac{5\pi}{12} - 1\pi = \frac{-7\pi}{12}$

• Encadrement de : $x = -\frac{5\pi}{12} + k\pi$:

 $-\pi \le -\frac{5\pi}{12} + k \pi < \pi$ et $k \in \mathbb{Z}$

Equivaut à: $-1 \le \frac{-5}{12} + k < 1$ donc $: -\frac{7}{12} \le k < \frac{17}{12}$

Par suite: k = 0 ou k = 1

Si k = 0 alors: $x = -\frac{5\pi}{12} + 0\pi = -\frac{5\pi}{12}$

Si k = 1 alors: $x = -\frac{5\pi}{12} + 1\pi = \frac{7\pi}{12}$

Finalement: $S = \left\{ -\frac{7\pi}{12}; -\frac{5\pi}{12}; \frac{5\pi}{12}; \frac{7\pi}{12} \right\}$

3) $2\sqrt{2}\sin x + 2 = 0$ Équivaut à : $\sin x = -\frac{\sqrt{2}}{2}$

C'est-à-dire : $\sin x = -\sin \frac{\pi}{4}$

Équivaut à : $\sin x = \sin \left(-\frac{\pi}{4} \right)$

L'équation a pour solutions :

 $-\frac{\pi}{4} + 2k\pi \text{ et } \pi - \left(-\frac{\pi}{4}\right) + 2k\pi = \frac{5\pi}{4} + 2k\pi \text{ où } k \in \mathbb{Z}$

• Encadrement de $-\frac{\pi}{4} + 2k\pi$:

 $-\frac{\pi}{2} \le -\frac{\pi}{4} + 2k\pi \le \frac{5\pi}{2}$ et $k \in \mathbb{Z}$

Donc $-\frac{1}{2} \le -\frac{1}{4} + 2k \le \frac{5}{2}$ c'est-à-dire : $-\frac{1}{2} + \frac{1}{4} \le 2k \le \frac{5}{2} + \frac{1}{4}$

Donc $-\frac{1}{9} \le k \le \frac{11}{9}$

C'est-à-dire : $-0.12 \le k \le 1.37$ et $k \in \mathbb{Z}$

Donc k = 0 ou k = 1

Pour k = 0 on trouve $x_1 = -\frac{\pi}{4} + 2 \times 0\pi = -\frac{\pi}{4}$

Pour k=1 on trouve $x_2 = -\frac{\pi}{4} + 2 \times 1\pi = \frac{7\pi}{4}$

• Encadrement de $\frac{5\pi}{4} + 2k\pi$:

 $-\frac{\pi}{2} \le \frac{5\pi}{4} + 2k\pi \le \frac{5\pi}{2}$ et $k \in \mathbb{Z}$

Donc: $-\frac{1}{2} \le \frac{5}{4} + 2k \le \frac{5}{2}$ c'est-à-dire: $-\frac{1}{2} - \frac{5}{4} \le 2k \le \frac{5}{2} - \frac{5}{4}$

Donc: $-\frac{7}{9} \le k \le \frac{5}{9}$ c'est-à-dire: $-0.8 \le k \le 0.6$

et $k \in \mathbb{Z}$ donc: k = 0

Pour k = 0 on trouve : $x_3 = \frac{5\pi}{4} + 2 \times 0\pi = \frac{5\pi}{4}$

Donc $S = \left\{ -\frac{\pi}{4}; \frac{7\pi}{4}; \frac{5\pi}{4} \right\}$

Exercice 9: (*) (**) Résoudre dans \mathbb{R} les équations

suivantes : 1) $\cos\left(2x + \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$

2) $\sin(2x) = \cos(3x)$ 3) $\tan\left(\frac{\pi}{4} - x\right) = -\sqrt{3}$

Solution: 1) on a : $\cos\left(2x + \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$

Équivaut à : $\cos\left(2x + \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{6}\right)$

Équivaut à : $2x = \frac{\pi}{6} - \frac{\pi}{3} + 2k\pi$ ou $2x = -\frac{\pi}{6} - \frac{\pi}{3} + 2k\pi$

Équivaut à : $2x = -\frac{\pi}{6} + 2k\pi$ ou $2x = -\frac{\pi}{2} + 2k\pi$

Équivaut à : $x = -\frac{\pi}{12} + k\pi$ ou $x = -\frac{\pi}{4} + k\pi$ et $k \in \mathbb{Z}$

Tronc commun Sciences BIOF

Donc les solutions de l'équation dans \mathbb{R} sont :

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{12} + k\pi / k \in \mathbb{Z} \right\} \cup \left\{ -\frac{\pi}{4} + k\pi / k \in \mathbb{Z} \right\}$$

2) On a: $\sin(2x) = \cos(3x)$

Équivaut à :
$$\sin(2x) = \sin\left(\frac{\pi}{2} - 3x\right)$$

Équivaut à :
$$2x = \frac{\pi}{2} - 3x + 2k\pi$$
 ou $2x = \pi - \left(\frac{\pi}{2} - 3x\right) + 2k\pi$

Équivaut à :
$$5x = \frac{\pi}{2} + 2k\pi$$
 ou $-x = \frac{\pi}{2} + 2k\pi$ et $k \in \mathbb{Z}$

Équivaut à :
$$x = \frac{\pi}{10} + \frac{2k\pi}{5}$$
 ou $x = -\frac{\pi}{2} + 2k\pi$ et $k \in \mathbb{Z}$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{10} + \frac{2k\pi}{5} / k \in \mathbb{Z} \right\} \cup \left\{ -\frac{\pi}{2} + 2k\pi / k \in \mathbb{Z} \right\}$$

3) On a :
$$\tan\left(\frac{\pi}{4} - x\right) = -\sqrt{3}$$
 équivaut à : $\tan\left(\frac{\pi}{4} - x\right) = -\tan\left(\frac{\pi}{3}\right)$

Équivaut à :
$$\tan\left(\frac{\pi}{4} - x\right) = -\tan\left(\frac{\pi}{3}\right)$$

Équivaut à :
$$\tan\left(\frac{\pi}{4} - x\right) = \tan\left(-\frac{\pi}{3}\right)$$

Équivaut à :
$$\frac{\pi}{4} - x = -\frac{\pi}{3} + k\pi$$

Équivaut à :
$$-x = -\frac{\pi}{3} - \frac{\pi}{4} + k\pi$$
 donc : $x = \frac{7\pi}{12} + k\pi$ et $k \in \mathbb{Z}$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ \frac{7\pi}{12} + k\pi / k \in \mathbb{Z} \right\}$$

Exercice 10: (*) (**) 1) Résoudre dans \mathbb{R}

l'équation:
$$\sin\left(\frac{\pi}{4} - x\right) = \frac{1}{2}$$
 (E)

2) En déduire dans $[-\pi; 2\pi[$ les solutions de l'équation (E)

Solution:1) On a :
$$\sin\left(\frac{\pi}{4} - x\right) = \frac{1}{2}$$

Équivaut à :
$$\sin\left(\frac{\pi}{4} - x\right) = \sin\frac{\pi}{6}$$

Équivaut à :
$$\frac{\pi}{4} - x = \frac{\pi}{6} + 2k\pi$$
 ou $\frac{\pi}{4} - x = \pi - \frac{\pi}{6} + 2k\pi$

Équivaut à :
$$-x = \frac{\pi}{6} - \frac{\pi}{4} + 2k\pi$$
 ou $-x = \frac{5\pi}{6} - \frac{\pi}{4} + 2k\pi$

Équivaut à :
$$x = \frac{\pi}{12} + 2k\pi$$
 ou $x = -\frac{7\pi}{12} + 2k\pi$ et $k \in \mathbb{Z}$

Donc les solutions de l'équation dans \mathbb{R} sont :

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{12} + 2k\pi / k \in \mathbb{Z} \right\} \cup \left\{ -\frac{7\pi}{12} + 2k\pi / k \in \mathbb{Z} \right\}$$

- 2) Résolution dans $\left[-\pi; 2\pi\right]$ de l'équation(E)
- Encadrement de : $\frac{\pi}{12} + 2k\pi$:

$$-\pi \leq \frac{\pi}{12} + 2k\pi < 2\pi$$
 et $k \in \mathbb{Z}$

Donc
$$-1 \le \frac{1}{12} + 2k < 2$$
 c'est-à-dire : $-\frac{13}{12} \le 2k < \frac{23}{12}$

Cela signifie que :
$$-\frac{13}{24} \le k < \frac{23}{24}$$
 et $k \in \mathbb{Z}$

Donc
$$k = 0$$
 et Pour $k = 0$ on trouve : $x_1 = \frac{\pi}{12}$

• Encadrement de : $-\frac{7\pi}{12} + 2k\pi$:

$$-\pi \le -\frac{7\pi}{12} + 2k\pi < 2\pi \text{ et } k \in \mathbb{Z}$$

Donc
$$-1 \le \frac{-7}{12} + 2k < 2$$
 alors: $-1 + \frac{7}{12} \le 2k < 2 + \frac{7}{12}$

C'est-à-dire:
$$-\frac{5}{24} \le k < \frac{31}{24}$$
 et $k \in \mathbb{Z}$

Donc
$$k=0$$
 ou $k=1$

Pour
$$k = 0$$
 on trouve : $x_2 = \frac{-7\pi}{12}$

et Pour
$$k=1$$
 on trouve $x_3 = \frac{17\pi}{12}$

Donc
$$S_{[-\pi;2\pi[} = \left\{ \frac{-7\pi}{12}; \frac{\pi}{12}; \frac{17\pi}{12} \right\}$$

Exercice 11: (**) Soit x un réel tel que :

$$\sin x \times \cos x = \frac{1}{2} \quad (E)$$

Montrer alors que : $\sin x = \cos x$ et déterminer tous les réels x qui vérifient l'égalité (E)

Solution: 1) on a :
$$\sin x \times \cos x = \frac{1}{2}$$

Équivaut à :
$$2\sin x \times \cos x = 1$$

Or on a:
$$\sin^2 x + \cos^2 x = 1$$
 donc:

$$\sin^2 x + \cos^2 x = 2\sin x \times \cos x$$

Donc:
$$\sin^2 x + \cos^2 x - 2\sin x \times \cos x = 0$$

Équivaut à :
$$(\sin x - \cos x)^2 = 0$$

Équivaut à :
$$\sin x - \cos x = 0$$

C'est-à-dire :
$$\sin x = \cos x$$

Équivaut à : $\sin x = \sin \left(\frac{\pi}{2} - x \right)$

Équivaut à : $x = \frac{\pi}{2} - x + 2k\pi$ ou $x = \pi - \left(\frac{\pi}{2} - x\right) + 2k\pi$

Équivaut à : $2x = \frac{\pi}{2} + 2k\pi$ ou $0 = \frac{\pi}{2} + 2k\pi$ qui est

impossible Donc: $x = \frac{\pi}{4} + k\pi$ et $k \in \mathbb{Z}$

Donc : les réels x qui vérifient l'égalité (E)

Sont: $x = \frac{\pi}{4} + k\pi$ avec $k \in \mathbb{Z}$

Exercice 12: (*) (**) Résoudre les équations trigonométriques suivantes.

1) $\cos 2x = \cos\left(\frac{8\pi}{2}\right)$ dans \mathbb{R} puis dans $\left[\pi; 5\pi\right]$

2) $\sin\left(x - \frac{2\pi}{3}\right) = \sin\left(\frac{\pi}{5}\right)$ dans \mathbb{R} puis dans $\left[-2\pi; 2\pi\right]$

3) $\cos 3x = -\cos x$ dans \mathbb{R} puis dans $\left[-2\pi; \pi\right]$

4) $\sin\left(2x + \frac{\pi}{4}\right) = -\sin x$ dans \mathbb{R} puis dans $\left[4\pi; 6\pi\right]$

5) $\sin(3x) = \cos(2x)$ dans \mathbb{R}

Solution: 1) On a : $\cos 2x = \cos \left(\frac{8\pi}{2} \right)$

Équivaut à : $\cos 2x = \cos(4\pi)$

Équivaut à : $\cos 2x = \cos(0)$

Équivaut à : $2x = 0 + 2k\pi$ Équivaut à : $x = k\pi$

Donc les solutions de l'équation dans $\mathbb R$ sont :

 $S_{\mathbb{R}} = \{ k\pi / k \in \mathbb{Z} \}$

Pour la résolution dans : $[\pi; 5\pi]$ on va encadrer :

Encadrement de $k\pi$: $\pi \le k\pi \le 5\pi$

Équivaut à : $1 \le k \le 5$ $k \in \mathbb{Z}$

Donc: $k \in \{1, 2, 3, 4, 5\}$ par suite:

 $x_1 = \pi$; $x_2 = 2\pi$; $x_3 = 3\pi$; $x_4 = 4\pi$; $x_5 = 5\pi$

Donc: $S_{[\pi;5\pi]} = \{\pi; 2\pi; 3\pi; 4\pi; 5\pi\}$

2) on a: $\sin\left(x - \frac{2\pi}{3}\right) = \sin\left(\frac{\pi}{5}\right)$

Équivaut à : $x - \frac{2\pi}{3} = \frac{\pi}{5} + 2k\pi$ ou $x - \frac{2\pi}{3} = -\frac{\pi}{5} + 2k\pi$

Équivaut à : $x = \frac{13\pi}{15} + 2k\pi$ ou $x = \frac{22\pi}{15} + 2k\pi$ avec $k \in \mathbb{Z}$

Donc les solutions de l'équation dans \mathbb{R} sont :

$$S_{\mathbb{R}} = \left\{ \frac{13\pi}{15} + 2k\pi; \frac{22\pi}{15} + 2k\pi / k \in \mathbb{Z} \right\}$$

Pour la résolution dans : $[-2\pi; 2\pi]$ on va encadrer :

• Encadrement de $\frac{13\pi}{15} + 2k\pi$:

$$-2\pi \le \frac{13\pi}{15} + 2k\pi \le 2\pi$$
 Équivaut à : $\frac{-43\pi}{15} \le 2k\pi \le \frac{17\pi}{15}$

Équivaut à : $\frac{-43}{30} \le k \le \frac{17}{30}$ $k \in \mathbb{Z}$

Donc: $k \in \{-1; 0\}$ ce qui donne: $x_1 = -\frac{17\pi}{15}$;

$$x_2 = \frac{13\pi}{15}$$

• Encadrement de $\frac{22\pi}{15} + 2k\pi$:

$$-2\pi \le \frac{22\pi}{15} + 2k\pi \le 2\pi$$
 Équivaut à : $\frac{-52}{30} \le k \le \frac{8}{30}$

 $k \in \mathbb{Z}$ Donc: $k \in \{-1, 0\}$ ce qui donne:

$$x_3 = -\frac{8\pi}{15}$$
; $x_4 = \frac{22\pi}{15}$

Finalement : $S_{[-2\pi;2\pi]} = \left\{ -\frac{17\pi}{15}; \frac{13\pi}{15}; \frac{-8\pi}{15}; \frac{22\pi}{15} \right\}$

3) on a : $\cos 3x = -\cos x$ Équivaut à :

 $\cos 3x = \cos(\pi - x)$

Équivaut à : $3x = \pi - x + 2k\pi$ ou $3x = -(\pi - x) + 2k\pi$

Équivaut à : $4x = \pi + 2k\pi$ ou $2x = -\pi + 2k\pi$ avec $k \in \mathbb{Z}$

Équivaut à : $x = \frac{\pi}{4} + \frac{k\pi}{2}$ ou $x = -\frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + \frac{k\pi}{2}; -\frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$$

Pour la résolution dans : $[-2\pi; \pi]$ on va encadrer :

• Encadrement de $\frac{\pi}{4} + \frac{k\pi}{2}$:

$$-2\pi \le \frac{\pi}{4} + \frac{k\pi}{2} \le \pi$$
 Équivaut à : $\frac{-9\pi}{4} \le \frac{k\pi}{2} \le \frac{3\pi}{4}$ $k \in \mathbb{Z}$

C'est-à-dire: $\frac{-9}{2} \le k \le \frac{3}{2}$ $k \in \mathbb{Z}$

Donc: $k \in \{-4, -3, -2, -1, 0, 1\}$ ce qui donne:

$$x_1 = -\frac{7\pi}{4}$$
; $x_2 = \frac{-5\pi}{4}$; $x_3 = \frac{-3\pi}{4}$; $x_4 = \frac{-\pi}{4}$; $x_5 = \frac{\pi}{4}$; $x_6 = \frac{3\pi}{4}$

• Encadrement de $-\frac{\pi}{2} + k\pi$:

$$-2\pi \le -\frac{\pi}{2} + k\pi \le \pi$$
 Équivaut à : $-\frac{3\pi}{2} \le k\pi \le \frac{3\pi}{2}$

C'est-à-dire :
$$\frac{-3}{2} \le k \le \frac{3}{2}$$
 $k \in \mathbb{Z}$

Donc: $k \in \{-1,0,1\}$ ce qui donne:

$$x_7 = -\frac{3\pi}{2}$$
; $x_8 = -\frac{\pi}{2}$; $x_9 = \frac{\pi}{2}$

Finalement:

$$S_{[-2\pi;\pi]} = \left\{ -\frac{7\pi}{4}; \frac{-5\pi}{4}; \frac{-3\pi}{4}; \frac{-\pi}{4}; \frac{\pi}{4}; \frac{3\pi}{4}; \frac{-3\pi}{2}; \frac{-\pi}{2}; \frac{\pi}{2} \right\}$$

4)
$$\sin\left(2x + \frac{\pi}{4}\right) = -\sin x$$
 Équivaut à: $\sin\left(2x + \frac{\pi}{4}\right) = \sin\left(-x\right)$

Équivaut à :
$$2x + \frac{\pi}{4} = -x + 2k\pi$$
 ou $2x + \frac{\pi}{4} = \pi - (-x) + 2k\pi$

Équivaut à :
$$3x = -\frac{\pi}{4} + 2k\pi$$
 ou $x = \frac{3\pi}{4} + 2k\pi$

C'est-à-dire :
$$x = -\frac{\pi}{12} + \frac{2k\pi}{3}$$
 ou $x = \frac{3\pi}{4} + 2k\pi$

Donc l'ensemble des solutions de l'équation dans $\mathbb R$

est:
$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{12} + \frac{2k\pi}{3}; \frac{3\pi}{4} + 2k\pi/k \in \mathbb{Z} \right\}.$$

• Encadrement de $-\frac{\pi}{12} + \frac{2k\pi}{3}$:

$$4\pi \le -\frac{\pi}{12} + \frac{2k\pi}{3} \le 6\pi$$
 Équivaut à : $\frac{49\pi}{12} \le \frac{2k\pi}{3} \le \frac{73\pi}{12}$

Équivaut à :
$$\frac{49}{8} \le k \le \frac{73}{8}$$
 $k \in \mathbb{Z}$

Donc : $k \in \{7;8;9\}$ ce qui donne :

$$x_1 = \frac{55\pi}{12}$$
; $x_2 = \frac{63\pi}{12}$; $x_3 = \frac{71\pi}{12}$

• Encadrement de $\frac{3\pi}{4} + 2k\pi$:

$$4\pi \le \frac{3\pi}{4} + 2k\pi \le 6\pi$$
 Équivaut à : $\frac{13\pi}{4} \le 2k\pi \le \frac{21\pi}{4}$

$$k \in \mathbb{Z}$$
 c'est-à-dire : $\frac{13}{8} \le k \le \frac{21}{8}$ $k \in \mathbb{Z}$

Donc: k = 2 ce qui donne: $x_4 = \frac{19\pi}{4}$

Finalement:
$$S_{[4\pi;6\pi]} = \left\{ \frac{55\pi}{12}; \frac{63\pi}{12}; \frac{71\pi}{12}; \frac{19\pi}{4} \right\}$$

5)
$$\sin(3x) = \cos(2x)$$
 dans \mathbb{R}

$$\sin(3x) = \cos(2x)$$
 Équivaut à : $\cos\left(\frac{\pi}{2} - 3x\right) = \cos(2x)$

Équivaut à :
$$\frac{\pi}{2} - 3x = 2x + 2k\pi$$
 ou $\frac{\pi}{2} - 3x = -2x + 2k\pi$

Équivaut à :
$$5x = \frac{\pi}{2} + 2k\pi$$
 ou $x = \frac{\pi}{2} + 2k\pi$

C'est-à-dire :
$$x = \frac{\pi}{10} + \frac{k\pi}{2}$$
 ou $x = \frac{\pi}{2} + 2k\pi$

Donc l'ensemble des solutions de l'équation

dans
$$\mathbb{R}$$
 est: $S_{\mathbb{R}} = \left\{ \frac{\pi}{10} + \frac{k\pi}{2}; \frac{\pi}{2} + 2k\pi/k \in \mathbb{Z} \right\}$

Exercice 13: (*) (**) **1**) Résoudre dans \mathbb{R}

l'équation suivante :
$$\cos 2x = \cos \left(x - \frac{\pi}{3}\right)$$

2) Résoudre dans $[0; \pi]$ l'équation suivante :

$$\sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4} - x\right)$$

3) Résoudre dans $-\frac{\pi}{2}$; $\frac{\pi}{2}$ l'équation suivante :

$$\tan\left(2x-\frac{\pi}{5}\right)=1$$

Solution: 1) On a :
$$\cos 2x = \cos \left(x - \frac{\pi}{3}\right)$$

Équivaut à :
$$2x = x - \frac{\pi}{3} + 2k\pi$$
 ou $2x = -\left(x - \frac{\pi}{3}\right) + 2k\pi$

Équivaut à :
$$2x - x = -\frac{\pi}{3} + 2k\pi$$
 ou $2x + x = \frac{\pi}{3} + 2k\pi$

équivaut à :
$$x = -\frac{\pi}{3} + 2k\pi$$
 ou $x = \frac{\pi}{9} + \frac{2k\pi}{3}$ et $k \in \mathbb{Z}$

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{3} + 2k\pi; \frac{\pi}{9} + \frac{2k\pi}{3} / k \in \mathbb{Z} \right\}$$

2) On a
$$\sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4} - x\right)$$

Équivaut à :

$$2x - \frac{\pi}{3} = \frac{\pi}{4} - x + 2k\pi$$
 ou $2x - \frac{\pi}{3} = \pi - \frac{\pi}{4} + x + 2k\pi$

Équivaut à :
$$3x = \frac{\pi}{4} + \frac{\pi}{3} + 2k\pi$$
 ou $x = \pi - \frac{\pi}{4} + \frac{\pi}{3} + 2k\pi$

Donc
$$x = \frac{7\pi}{36} + \frac{2k\pi}{3}$$
 ou $x = \frac{13\pi}{12} + 2k\pi$

• Encadrement de
$$\frac{7\pi}{36} + \frac{2k\pi}{3}$$
: $0 \le \frac{7\pi}{36} + \frac{2k\pi}{3} \le \pi$

Tronc commun Sciences BIOF

Donc
$$0 \le \frac{7}{36} + \frac{2k}{3} \le 1$$
 c'est-à-dire : $-\frac{7}{24} \le k \le \frac{29}{36}$

Cela signifie que : $-0,29 \le k \le 1,2$ et $k \in \mathbb{Z}$

Donc k=0 ou k=1

Pour
$$k = 0$$
 on trouve : $x_1 = \frac{7\pi}{36}$

Pour
$$k = 1$$
 on trouve : $x_2 = \frac{7\pi}{36} + \frac{2\pi}{3} = \frac{31\pi}{36}$

• Encadrement de :
$$x = \frac{13\pi}{12} + 2k\pi$$

$$0 \le \frac{13\pi}{12} + 2k\pi \le \pi \quad \text{ et } k \in \mathbb{Z}$$

Donc
$$0 \le \frac{13}{12} + 2k \le 1$$
 c'est-à-dire : $-\frac{13}{24} \le k \le -\frac{1}{24}$

Cela signifie que : $-0.54 \le k \le -0.04$ et $k \in \mathbb{Z}$ Donc k n'existe pas

• Donc
$$S_{[0,\pi]} = \left\{ \frac{7\pi}{36}; \frac{31\pi}{36} \right\}$$

3) On a
$$\tan\left(2x - \frac{\pi}{5}\right) = 1$$
 est définie

Équivaut à :
$$2x - \frac{\pi}{5} \neq \frac{\pi}{2} + k\pi$$

Équivaut à :
$$2x \neq \frac{\pi}{2} + \frac{\pi}{5} + k\pi$$

Équivaut à :
$$2x \neq \frac{7\pi}{10} + k\pi$$
 cela signifie que :

$$x \neq \frac{7\pi}{20} + \frac{k\pi}{2}$$
, donc $D = \mathbb{R} - \left\{ \frac{7\pi}{20} + \frac{k\pi}{2}; k \in \mathbb{Z} \right\}$

Or on sait que :
$$\tan\left(\frac{\pi}{4}\right) = 1$$

Équivaut à :
$$\tan\left(2x - \frac{\pi}{5}\right) = \tan\left(\frac{\pi}{4}\right)$$

Donc:
$$2x - \frac{\pi}{5} = \frac{\pi}{4} + k\pi$$
 équivaut à : $2x = \frac{\pi}{4} + \frac{\pi}{5} + k\pi$

Équivaut à :
$$2x = \frac{9\pi}{20} + k\pi$$

Équivaut à :
$$x = \frac{9\pi}{40} + \frac{k\pi}{2}$$

Encadrement de :
$$\frac{9\pi}{40} + \frac{k\pi}{2}$$

$$-\frac{\pi}{2} < \frac{9\pi}{40} + \frac{k\pi}{2} < \frac{\pi}{2} \quad \text{et } k \in \mathbb{Z}$$

Donc
$$-\frac{1}{2} < \frac{9}{40} + \frac{k}{2} < \frac{1}{2}$$
 c'est-à-dire: $-\frac{29}{40} < \frac{k}{2} < \frac{11}{40}$

Donc:
$$-\frac{29}{40} < \frac{k}{2} < \frac{11}{40}$$
 donc: $-\frac{29}{20} < k < \frac{11}{20}$

Donc
$$-1,45 \prec k \prec 0,55$$
 et $k \in \mathbb{Z}$

Donc
$$k = 0$$
 ou $k = -1$

Pour
$$k = 0$$
 on trouve : $x_1 = \frac{9\pi}{40}$

Pour
$$k = -1$$
 on trouve : $x_2 = \frac{9\pi}{40} - \frac{\pi}{2} = -\frac{11\pi}{40}$

Donc
$$S = \left\{ -\frac{11\pi}{40}; \frac{9\pi}{40} \right\}$$

Exercice 14: (*) (**) Résoudre dans l'intervalle I les équations suivantes :

1)
$$\tan x = \sin x$$
; $I = \mathbb{R}$

2)
$$\tan x = -\tan \frac{\pi}{12}$$
 ; $I = \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$

3)
$$\sqrt{3} \tan \left(2x - \frac{\pi}{4}\right) = 1$$
 ; $I = \mathbb{R}$

4)
$$\tan x \times \tan 2x = 1$$
 ; $I = \left[-\frac{\pi}{4}; \frac{\pi}{4} \right]$

Solution:1) On a $\tan x = \sin x$ est définie

Équivaut à :
$$x \neq \frac{\pi}{2} + k\pi$$
 Avec : $k \in \mathbb{Z}$

$$\tan x = \sin x$$
 Équivaut à : $\frac{\sin x}{\cos x} - \sin x = 0$

Équivaut à :
$$\frac{\sin x}{\cos x} (1 - \cos x) = 0$$

Équivaut à :
$$\tan x (1 - \cos x) = 0$$

Équivaut à :
$$\tan x = 0$$
 ou $1 - \cos x = 0$

C'est-à-dire:
$$\tan x = 0$$
 ou $\cos x = 1$

Équivaut à :
$$x = k\pi$$
 ou $x = 2k\pi$

Donc les solutions de l'équation dans
$$\mathbb{R}$$
 sont :

$$S_{\mathbb{R}} = \left\{2k\pi \, / \, k \in \mathbb{Z}\right\} \cup \left\{k\pi \, / \, k \in \mathbb{Z}\right\} = \left\{k\pi \, / \, k \in \mathbb{Z}\right\}$$

2)
$$\tan x = -\tan \frac{\pi}{12}$$
 ; $I = \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$

Équivaut à :
$$\tan x = \tan \left(-\frac{\pi}{12}\right)$$

Équivaut à :
$$x = -\frac{\pi}{12} + k\pi$$
 avec : $k \in \mathbb{Z}$

Or on a:
$$-\frac{\pi}{2} \prec x \prec \frac{\pi}{2}$$
 donc: $-\frac{\pi}{2} \prec -\frac{\pi}{12} + k\pi \prec \frac{\pi}{2}$

Donc:
$$-\frac{1}{2} \prec -\frac{1}{12} + k \prec \frac{1}{2}$$
 c'est-à-dire: $\frac{1}{12} - \frac{1}{2} \prec k \prec \frac{1}{2} + \frac{1}{12}$

Donc:
$$-\frac{5}{12} \prec k \prec \frac{7}{12}$$
 avec: $k \in \mathbb{Z}$

C'est-à-dire: k = 0 et par suite : $x = -\frac{\pi}{12} + 0 \times \pi = -\frac{\pi}{12}$

Par suite l'ensemble des solutions de l'équation

dans:
$$I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[\text{ est}: S = \left\{ -\frac{\pi}{12} \right\}$$

3)
$$\sqrt{3} \tan \left(2x - \frac{\pi}{4}\right) = 1$$
 ; $I = \mathbb{R}$

Équivaut à :
$$\tan\left(2x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

C'est à dire :
$$\tan\left(2x - \frac{\pi}{4}\right) = \tan\left(\frac{\pi}{6}\right)$$

Équivaut à :
$$2x - \frac{\pi}{4} = \frac{\pi}{6} + k\pi$$
 et $k \in \mathbb{Z}$

Qui signifie que :
$$2x = \frac{\pi}{6} + \frac{\pi}{4} + k\pi$$

Équivaut à :
$$2x = \frac{5\pi}{12} + k\pi$$

Donc:
$$x = \frac{5\pi}{24} + \frac{k\pi}{2}$$
 Avec: $k \in \mathbb{Z}$

Par suite l'ensemble des solutions de l'équation

Dans
$$\mathbb{R}$$
 est: $S_{\mathbb{R}} = \left\{ \frac{5\pi}{24} + \frac{k\pi}{2} / k \in \mathbb{Z} \right\}$.

4)
$$\tan x \times \tan 2x = 1$$
 ; $I = \left] -\frac{\pi}{4}; \frac{\pi}{4} \right[$

Équivaut à :
$$\tan 2x = \frac{1}{\tan x}$$

C'est à dire :
$$\tan 2x = \tan \left(\frac{\pi}{2} - x\right)$$

Équivaut à :
$$2x = \frac{\pi}{2} - x + k\pi$$
 avec : $k \in \mathbb{Z}$

C'est à dire :
$$3x = \frac{\pi}{2} + k\pi$$
 avec : $k \in \mathbb{Z}$

Équivaut à :
$$x = \frac{\pi}{6} + \frac{k\pi}{3}$$
 avec : $-\frac{\pi}{4} < x < \frac{\pi}{4}$

Donc:
$$-\frac{\pi}{4} < \frac{\pi}{6} + \frac{k\pi}{3} < \frac{\pi}{4}$$
 e'est-à-dire: $-\frac{1}{4} < \frac{1}{6} + \frac{k}{3} < \frac{1}{4}$

Donc:
$$-\frac{3}{2} < 1 + 2k < \frac{3}{2}$$
 c'est-à-dire: $-\frac{5}{2} < 2k < \frac{1}{2}$

Donc:
$$-\frac{5}{4} \prec k \prec \frac{1}{4}$$
 et $k \in \mathbb{Z}$

C'est-à-dire :
$$k = 0$$
 ou $k = -1$

Par suite :
$$x = \frac{\pi}{6}$$
 et $x = -\frac{\pi}{6}$

Donc l'ensemble des solutions de l'équation dans

$$I = \left] -\frac{\pi}{4}; \frac{\pi}{4} \right[\text{ est} : S = \left\{ -\frac{\pi}{6}; \frac{\pi}{6} \right\}$$

Exercice 15: (**)

1) Montrer que : si $x \in \mathbb{R}$

$$2\sin^{2}\left(x+\frac{\pi}{2}\right)-\cos\left(x+11\pi\right)-1=(\cos x+1)(2\cos x-1)$$

2) Résoudre dans $]-\pi;\pi]$ l'équation suivante :

$$2\sin^2\left(x+\frac{\pi}{2}\right)-\cos\left(x+11\pi\right)-1=0 \quad (E)$$

- 3) Placer sur le cercle les solutions de 1'équation (E).
- 4) Soient A; B; C les points trouvés dans la question 3)

Montrer que : ABC est un triangle équilatérale.

Solution: 1)
$$2\sin^2\left(x+\frac{\pi}{2}\right)-\cos\left(x+11\pi\right)-1$$

$$=2(\cos x)^2-\cos(x+10\pi+\pi)-1$$

$$=2(\cos x)^2-\cos(x+\pi)-1$$

$$= 2(\cos x)^2 + \cos x - 1$$

Et on a $(\cos x + 1)(2\cos x - 1) = 2(\cos x)^2 + \cos x - 1$ Donc:

$$2\sin^{2}\left(x+\frac{\pi}{2}\right)-\cos(x+11\pi)-1=(\cos x+1)(2\cos x-1)$$

2)
$$2\sin^2\left(x+\frac{\pi}{2}\right)-\cos\left(x+11\pi\right)-1=0$$

Équivaut à :
$$(\cos x+1)(2\cos x-1)=0$$

Équivaut à :
$$\cos x + 1 = 0$$
 ou $2\cos x - 1 = 0$

C'est-à-dire :
$$\cos x = -1$$
 ou $\cos x = \frac{1}{2}$

Équivaut à :
$$\cos x = -1$$
 ou $\cos x = \cos\left(\frac{\pi}{3}\right)$

Donc:
$$x = (2k+1)\pi$$
 ou $x = \frac{\pi}{3} + 2k\pi$ ou

$$x = -\frac{\pi}{3} + 2k\pi \text{ et } k \in \mathbb{Z}$$

• Encadrement de $(2k+1)\pi$: $-\pi < (2k+1)\pi \le \pi$

Donc
$$-1 < 2k+1 \le 1$$
 c'est-à-dire : $-2 < 2k \le 0$

Équivaut à : $-1 < k \le 0$ et $k \in \mathbb{Z}$

Donc
$$k = 0$$
 et on trouve $x_1 = \pi$

• Encadrement de $\frac{\pi}{3} + 2k\pi$: $-\pi < \frac{\pi}{3} + 2k\pi \le \pi$ et $k \in \mathbb{Z}$

Donc $-1 < \frac{1}{2} + 2k \le 1$

Donc $\frac{-4}{3} < 2k \le \frac{2}{3}$ c'est-à-dire : $\frac{-2}{3} < k \le \frac{1}{3}$ et $k \in \mathbb{Z}$

Donc k=0 et on trouve $x_2 = \frac{\pi}{2}$

• Encadrement de $-\frac{\pi}{3} + 2k\pi$:

On a: $-\pi < -\frac{\pi}{3} + 2k\pi \le \pi$ et $k \in \mathbb{Z}$

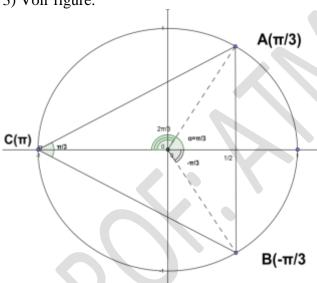
Donc $-1 < -\frac{1}{3} + 2k \le 1$ équivaut à : $\frac{-2}{3} < 2k \le \frac{4}{3}$

C'est-à-dire: $\frac{-1}{3} < k \le \frac{2}{3}$ et $k \in \mathbb{Z}$

Donc k=0 et on trouve $x_3 = -\frac{\pi}{2}$

Donc $S_{]-\pi;\pi]} = \left\{\pi; \frac{\pi}{3}; \frac{-\pi}{3}\right\}$

3) Voir figure.



4) Montrons que : ABC est un triangle équilatérale : On a: OA = OB = OC donc les triangles : OAB; OAC; OBC sont des triangles isocèles de sommet O Exemple dans le triangle *OAB* on a : $AOB = \frac{2\pi}{2}$

Donc: $OAB = OBA = \frac{\pi}{6}$

De même on déduit que :

$$OBC = OCB = OAC = OCA = \frac{\pi}{6}$$

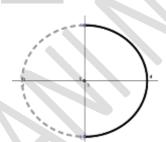
Équivaut à $ABC = BAC = ACB = \frac{\pi}{3}$

Par suite : ABC est un triangle équilatérale.

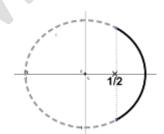
Exercice 16: (*) (**) Représenter sur un cercle trigonométrique l'ensemble des points du cercle associés aux réels x vérifiant :

- 1) $0 \le \cos(x) \le 1$
- 2) $\cos(x) \in \left| \frac{1}{2}; 1 \right|$
- $3) -1 < \sin(x) < 0$
- 4) $-\frac{1}{2} \le \sin(x) \le 1$
- 5) $\sin(x) \in \left[-\frac{\sqrt{2}}{2}; 0\right]$ 6) $\cos(x) \in \left[-\frac{1}{2}; \frac{\sqrt{3}}{2}\right]$

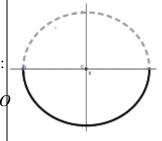
Solution: 1) $0 \le \cos(x) \le 1$



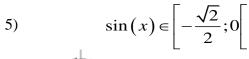
2) $\cos(x) \in \left| \frac{1}{2}; 1 \right|$



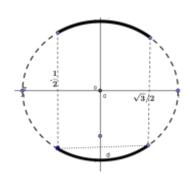
3) $-1 < \sin(x) < 0$



4) $-\frac{1}{2} \le \sin(x) \le 1$



6)
$$\cos(x) \in \left[-\frac{1}{2}; \frac{\sqrt{3}}{2}\right]$$



Exercice17: (**) Résoudre dans $[0,2\pi]$

l'inéquation suivante : $\sin x \ge \frac{1}{2}$

Solution: $\sin x = \frac{1}{2}$ Équivaut à : $\sin x = \sin \frac{\pi}{6}$

Équivaut à : $x = \frac{\pi}{6} + 2k\pi$ ou $x = \pi - \frac{\pi}{6} + 2k\pi$

5π/6

Équivaut à :

$$x = \frac{\pi}{6} + 2k\pi \text{ ou}$$

$$x = \frac{5\pi}{6} + 2k\pi \text{ et } k \in \mathbb{Z}$$

Et puisque : $x \in [0; 2\pi]$

alors:
$$x = \frac{\pi}{6}$$
 ou $x = \frac{5\pi}{6}$

On utilisant le cercle trigonométrique on compare $\sin x$ et $\frac{1}{2}$ dans $[0,2\pi[$

On trouve que : $\sin x \ge \frac{1}{2}$ Équivaut à :

$$x \in \left[\frac{\pi}{6}; \frac{5\pi}{6}\right]$$
 Donc: $S = \left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$

Exercice 18: (**) Résoudre dans $]-\pi,\pi]$

l'inéquation suivante : $\sin x \le -\frac{1}{2}$

Solution: $\sin x = -\frac{1}{2}$ Équivaut à : $\sin x = \sin\left(-\frac{\pi}{6}\right)$

Équivaut à : $x = -\frac{\pi}{6} + 2k\pi$ ou $x = \pi + \frac{\pi}{6} + 2k\pi$

Équivaut à : $x = -\frac{\pi}{6} + 2k\pi$ ou $x = \frac{7\pi}{6} + 2k\pi$ et $k \in \mathbb{Z}$

Et puisque : $x \in]-\pi;\pi]$ alors : $x = -\frac{\pi}{6}$ ou $x = -\frac{5\pi}{6}$

 $\sin x \le -\frac{1}{2}$ Équivaut à : $\sin x \le -\sin \frac{\pi}{6}$

On utilisant le cercle trigonométrique on compare $\sin x$ et

$$-\frac{1}{2}$$
 dans $]-\pi;\pi]$

On trouve que:

$$\sin x \le -\frac{1}{2}$$

Équivaut à : $x \in \left[-\frac{5\pi}{6}; -\frac{\pi}{6} \right]$

Donc
$$S = \left[-\frac{5\pi}{6}; -\frac{\pi}{6} \right]$$

Exercice 19: (**) Résoudre dans $]-\pi,\pi]$

l'inéquation suivante : $\cos x \ge \frac{\sqrt{2}}{2}$

Solution: $\cos x = \frac{\sqrt{2}}{2}$ Équivaut à : $\cos x = \cos\left(\frac{\pi}{4}\right)$

Équivaut à : $x = \frac{\pi}{4} + 2k\pi$ ou $x = -\frac{\pi}{4} + 2k\pi$ et $k \in \mathbb{Z}$

Et puisque : $x \in]-\pi;\pi]$ alors : $x = -\frac{\pi}{4}$ ou $x = \frac{\pi}{4}$

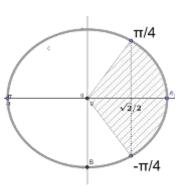
 $\cos x \ge \frac{\sqrt{2}}{2}$ Équivaut à :

 $\cos x \ge \cos \frac{\pi}{4}$

On utilisant le cercle trigonométrique on

compare $\cos x$ et $\frac{\sqrt{2}}{2}$

dans
$$]-\pi;\pi]$$



·π/6

Tronc commun Sciences BIOF

On trouve que : $\cos x \ge \frac{\sqrt{2}}{2}$ Équivaut à :

$$x \in \left[-\frac{\pi}{4}; \frac{\pi}{4}\right]$$

Donc:
$$S = \left[-\frac{\pi}{4}; \frac{\pi}{4} \right]$$

Exercice20: (**) Résoudre dans $\left] -\frac{\pi}{2}; \pi \right]$

l'inéquation suivante : $\cos x \le \frac{1}{2}$

Solution : $\cos x = \frac{1}{2}$ Équivaut à : $\cos x = \cos\left(\frac{\pi}{3}\right)$

Équivaut à : $x = \frac{\pi}{3} + 2k\pi$ ou $x = -\frac{\pi}{3} + 2k\pi$ et $k \in \mathbb{Z}$

Et puisque : $x \in \left[-\frac{\pi}{2}; \pi \right]$ alors : $x = -\frac{\pi}{3}$ ou $x = \frac{\pi}{3}$

 $\cos x \le \frac{1}{2}$ Équivaut à :

$$\cos x \le \cos \frac{\pi}{3}$$

On utilisant le cercle trigonométrique on compare :

 $\cos x$ et $\frac{1}{2}$

Dans
$$\left] -\frac{\pi}{2}; \pi \right]$$

On trouve que

$$S = \left[-\frac{\pi}{2}, -\frac{\pi}{3} \right] \cup \left[\frac{\pi}{3}, \pi \right]$$

Exercice21: (**) Résoudre dans $[0; 2\pi]$

l'inéquation suivante : $\cos x < \frac{\sqrt{3}}{2}$

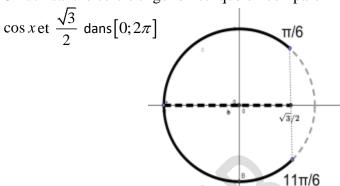
Solution: $\cos x = \frac{\sqrt{3}}{2}$ Équivaut à : $\cos x = \cos\left(\frac{\pi}{6}\right)$

Équivaut à : $x = \frac{\pi}{6} + 2k\pi$ ou $x = -\frac{\pi}{6} + 2k\pi$ et $k \in \mathbb{Z}$

Et puisque : $x \in [0; 2\pi]$ alors : $x = \frac{11\pi}{6}$ et $x = \frac{\pi}{6}$ (on utilisant les encadrements)

 $\cos x < \frac{\sqrt{3}}{2}$ Équivaut à : $\cos x < \cos \frac{\pi}{6}$

On utilisant le cercle trigonométrique on compare



On trouve que : $S = \left[\frac{\pi}{6}; \frac{11\pi}{6} \right]$

Exercice22: (**) Résoudre dans $]-\pi;\pi]$

l'inéquation suivante : $\cos x \le -\frac{\sqrt{2}}{2}$

Solution: $\cos x = -\frac{\sqrt{2}}{2}$

 $\pi/3$

-π/3

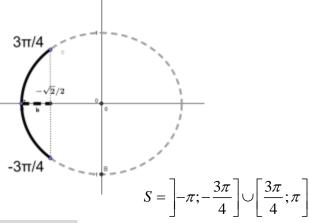
Équivaut à : $\cos x = -\cos\left(\frac{\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$

Équivaut à : $x = \frac{3\pi}{4} + 2k\pi$ ou $x = -\frac{3\pi}{4} + 2k\pi$ et $k \in \mathbb{Z}$

Et puisque: $x \in]-\pi;\pi]$ alors : $x = \frac{3\pi}{4}$ ou $x = -\frac{3\pi}{4}$

 $\cos x \le \frac{1}{2}$ Équivaut à : $\cos x \le \cos \frac{\pi}{3}$

On utilisant le cercle trigonométrique on compare $\cos x$ et $-\frac{\sqrt{2}}{2}$ Dans : $]-\pi;\pi]$ on trouve que :



Exercice23: (**) Résoudre dans $[0; 2\pi]$

l'inéquation suivante : $\sin x \ge -\frac{\sqrt{2}}{2}$

Tronc commun Sciences BIOF

Solution: $\sin x = -\frac{\sqrt{2}}{2}$

Équivaut à : $\sin x = -\sin \frac{\pi}{4} = \sin \left(-\frac{\pi}{4}\right)$

Équivaut à : $x = -\frac{\pi}{4} + 2k\pi$ ou $x = \pi + \frac{\pi}{4} + 2k\pi$

Équivaut à : $x = -\frac{\pi}{4} + 2k\pi$ ou $x = \frac{5\pi}{4} + 2k\pi$ et $k \in \mathbb{Z}$

Et puisque : $x \in [0; 2\pi]$ alors : $x = \frac{5\pi}{4}$ ou $x = \frac{7\pi}{4}$

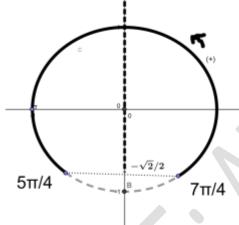
On utilisant le cercle trigonométrique on compare

 $\sin x \text{ et } -\frac{\sqrt{2}}{2} \text{ dans} [0; 2\pi]$

On trouve que:

 $\sin x \ge \frac{1}{2}$ Équivaut à : $x \in \left[0, \frac{5\pi}{4}\right] \cup \left[\frac{7\pi}{4}, 2\pi\right]$

Donc: $S = \left[0; \frac{5\pi}{4}\right] \cup \left[\frac{7\pi}{4}; 2\pi\right]$



Exercice24: (**) Résoudre dans $]-\pi,\pi]$ les inéquations suivantes : 1) $\cos x \le 0$ 2) $\sin x \ge 0$

Solution : On utilise le cercle trigonométrique

1)
$$S = \left[-\pi, -\frac{\pi}{2} \right] \cup \left[\frac{\pi}{2}, \pi \right]$$

2) $S = [0, \pi]$

Exercice25: (**) Résoudre dans $[0; 2\pi]$

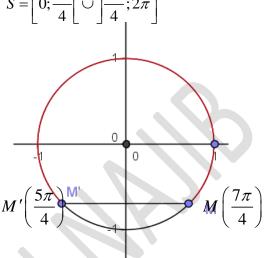
l'inéquation suivante : $\sin x > -\frac{\sqrt{2}}{2}$

Solution: On sait que: $\sin\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$ et $\sin\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{2}$

L'arc MM' en rouge correspond à tous les points

M(x) tel que : x Vérifie $\sin x > -\frac{\sqrt{2}}{2}$

Donc: $S = \left[0; \frac{5\pi}{4}\right] \cup \left[\frac{7\pi}{4}; 2\pi\right]$



Exercice26: (**) Résoudre dans $[0; 2\pi]$

l'inéquation suivante : $\tan x - 1 \ge 0$

Solution: $\tan x - 1 \ge 0$ Équivaut à : $\tan x \ge 1$

• l'inéquation $\tan x - 1 \ge 0$ est définie si et

seulement si : $x \neq \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$

Et puisque : $x \in [0; 2\pi]$ alors : $x \neq \frac{\pi}{2}$ et $x \neq \frac{3\pi}{2}$

• Résolution de l'équation : $\tan x = 1$ $\tan x = 1$ Équivaut à :

 $\tan x = \tan \frac{\pi}{4}$

Équivaut à : $x = \frac{\pi}{4} + k\pi$

Et puisque : $x \in [0; 2\pi]$

Alors: $x = \frac{5\pi}{4}$

ou $x = \frac{\pi}{4}$

On utilisant le cercle

trigonométrique On compare

 $\tan x$ et 1 dans $[0; 2\pi]$.

On trouve que : $\tan x \ge 1$

Équivaut à : $x \in \left[\frac{\pi}{4}; \frac{\pi}{2}\right] \cup \left[\frac{5\pi}{4}; \frac{3\pi}{2}\right]$

Donc:
$$S = \left[\frac{\pi}{4}; \frac{\pi}{2}\right] \cup \left[\frac{5\pi}{4}; \frac{3\pi}{2}\right]$$

Exercice27: (**) Résoudre dans $[0; 2\pi]$

l'inéquation suivante : $\tan x > -1$

Solution:

• l'inéquation $\tan x > -1$ est définie si et seulement $\mathrm{si}: x \neq \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$

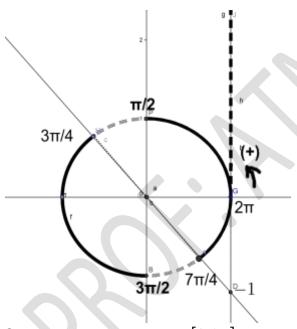
Et puisque : $x \in [0; 2\pi]$ alors : $x \neq \frac{\pi}{2}$ et $x \neq \frac{3\pi}{2}$

• Résolution de l'équation : $\tan x = -1$ $\tan x = -1$ Équivaut à :

$$\tan x = -\tan\frac{\pi}{4} = \tan\left(-\frac{\pi}{4}\right)$$

Équivaut à : $x = -\frac{\pi}{4} + k\pi$ avec $k \in \mathbb{Z}$

Et puisque : $x \in [0; 2\pi]$ alors : $x = \frac{7\pi}{4}$ ou $x = \frac{3\pi}{4}$ On utilisant le cercle trigonométrique



On compare $\tan x$ et -1 dans $[0; 2\pi]$

On trouve que : $\tan x > -1$ Équivaut à :

$$x \in \left[0; \frac{\pi}{2} \left[\, \cup \, \right] \frac{3\pi}{4}; \frac{3\pi}{2} \left[\, \cup \, \right] \frac{7\pi}{4}; 2\pi \, \right]$$

Donc: $S = \left[0; \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{4}; \frac{3\pi}{2}\right] \cup \left[\frac{7\pi}{4}; 2\pi\right]$

Exercice28: (**) Résoudre dans $[-\pi; \pi]$

l'inéquation suivante : $3 \tan x - \sqrt{3} \ge 0$

Solution:

• l'inéquation $3\tan x - \sqrt{3} \ge 0$ est définie si et seulement si : $x \ne \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$

Et puisque : $x \in [-\pi; \pi]$ alors : $x \neq \frac{\pi}{2}$ et $x \neq -\frac{\pi}{2}$

• Résolution de l'équation : $3 \tan x - \sqrt{3} = 0$

On a: $3 \tan x - \sqrt{3} = 0$ Équivaut à: $\tan x = \frac{\sqrt{3}}{3}$

On sait que : $\tan \frac{\pi}{6} = \frac{\sqrt{3}}{3}$

 $\tan x = \frac{\sqrt{3}}{3}$ Équivaut à : $x = \frac{\pi}{6} + k\pi$ avec $k \in \mathbb{Z}$

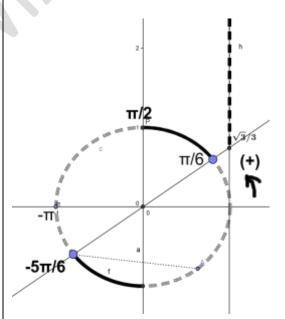
Et puisque : $x \in [-\pi; \pi]$ alors : $x = \frac{\pi}{6}$ ou $x = -\frac{5\pi}{6}$

On utilisant le cercle trigonométrique on compare $\sqrt{3}$

 $\tan x$ et $\frac{\sqrt{3}}{3}$ dans $\left[-\pi;\pi\right]$

On trouve que:

 $\tan x > \frac{\sqrt{3}}{3}$ Équivaut à : $x \in \left[-\frac{5\pi}{6}; -\frac{\pi}{2} \right] \cup \left[\frac{\pi}{6}; \frac{\pi}{2} \right]$



Donc: $S = \left[-\frac{5\pi}{6}; -\frac{\pi}{2} \right] \cup \left[\frac{\pi}{6}; \frac{\pi}{2} \right]$

Exercice29: (***) 1) a)Résoudre dans \mathbb{R} l'équation suivantes : $2\sin^2 x - 9\sin x - 5 = 0$ et en déduire les solutions dans $[0; 2\pi]$

- b) Résoudre dans $\left[0\,;2\pi\right]$ l'inéquation suivante :
- $2\sin^2 x 9\sin x 5 \le 0$
- 2) Résoudre dans $\left[0\,;\pi\right]$ l'inéquation suivante :
- $(2\cos x 1)(\tan x + 1) \ge 0$

Solution:1) a) On pose $t = \sin x$ et

l'équation $2\sin^2 x - 9\sin x - 5 \le 0$ devient :

$$2t^2 - 9t - 5 \le 0$$

On cherche les racines du trinôme $2t^2 - 9t - 5$: Calcul du discriminant :

$$\Delta = (-9)^2 - 4 \times 2 \times (-5) = 121$$

Les racines sont : $t_1 = \frac{9 - \sqrt{121}}{2 \times 2} = -\frac{1}{2}$ et

$$t_2 = \frac{9 + \sqrt{121}}{2 \times 2} = 5$$
 Donc $\sin x = -\frac{1}{2}$ et $\sin x = 5$

Or on sait que $-1 \le \sin x \le 1$ donc l'équation $\sin x = 5$ n'admet pas de solutions dans \mathbb{R}

$$\sin x = -\frac{1}{2}$$
 Équivaut à : $\sin x = \sin\left(-\frac{\pi}{6}\right)$

Donc:
$$x = -\frac{\pi}{6} + 2k\pi$$
 ou $x = \pi - \left(-\frac{\pi}{6}\right) + 2k\pi$

Équivaut à :
$$x = -\frac{\pi}{6} + 2k\pi$$
 ou $x = \frac{7\pi}{6} + 2k\pi$

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{6} + 2k\pi; \frac{7\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\}$$

• Encadrement de $-\frac{\pi}{6} + 2k\pi$:

$$0 \le -\frac{\pi}{6} + 2k\pi \le 2\pi$$
 et $k \in \mathbb{Z}$

Donc
$$0 \le -\frac{1}{6} + 2k \le 2$$
 équivaut à : $\frac{1}{12} \le k \le \frac{13}{12}$

C'est-à-dire: $0.08 \le k \le 1.02$ et $k \in \mathbb{Z}$

Donc k=1

Pour k = 1 on remplace on trouve

$$x_1 = -\frac{\pi}{6} + 2\pi = \frac{11\pi}{6}$$

• Encadrement de $\frac{7\pi}{6} + 2k\pi$: $0 \le \frac{7\pi}{6} + 2k\pi \le 2\pi$

Donc
$$0 \le \frac{7}{6} + 2k \le 2$$
 c'est-à-dire : $-\frac{7}{12} \le k \le \frac{5}{12}$

Donc $-0.5 \le k \le 0.41$ et $k \in \mathbb{Z}$

Donc k=0 on remplace on trouve : $x_2 = \frac{7\pi}{6}$

Donc
$$S_{[0;2\pi]} = \left\{ \frac{11\pi}{6}; \frac{7\pi}{6} \right\}$$

1) b) $2\sin^2 x - 9\sin x - 5 \le 0$ ssi

$$2\left(\sin x + \frac{1}{2}\right)\left(\sin x - 5\right) \le 0$$

Or on sait que $-1 \le \sin x \le 1$ donc $-1 \le \sin x \le 1 < 5$

c'est-à-dire: $\sin x - 5 < 0$

Puisque $\sin x - 5 < 0$ et 2 > 0 alors

$$2\left(\sin x + \frac{1}{2}\right)\left(\sin x - 5\right) \le 0$$

Équivaut à : $\sin x + \frac{1}{2} \ge 0$

Équivaut à :
$$\sin x \ge -\frac{1}{2}$$
 équivaut à : $\sin x \ge \sin\left(-\frac{\pi}{6}\right)$

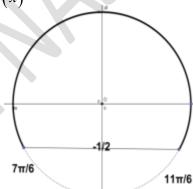
L'arc en trait plein correspond

à tous les points M(x)

Tel que : x vérifie

 $\sin x \ge -\frac{1}{2}$

Donc



$$S = \left[0; \frac{7\pi}{6}\right] \cup \left[\frac{11\pi}{6}; 2\pi\right]$$

2) l'inéquation $(2\cos x - 1)(\tan x + 1) \ge 0$ est définie

dans $[0; \pi]$ si et seulement si : $x \neq \frac{\pi}{2} + k\pi$

Donc
$$D = [0; \pi] - \left\{\frac{\pi}{2}\right\}$$

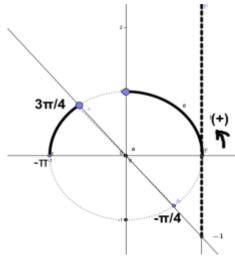
 $2\cos x - 1 \ge 0$

Équivaut à : $\cos x \ge \frac{1}{2}$

Si et seulement si : $\cos x \ge \cos \frac{\pi}{3}$

 $\tan x + 1 \ge 0$ Équivaut à : $\tan x \ge -1$

Si et seulement si : $\tan x \ge \tan \left(\frac{3\pi}{4}\right)$



Donc:

x	0 3	3 3	$\frac{\pi}{2}$ $\frac{3}{4}$	$\frac{\pi}{1}$ π
2cosx -1	+ (-	_	-
tanx+1	+	+	- () +
produit	+ (-	+ () –

$$S = \left[0; \frac{\pi}{3}\right] \cup \left[\frac{\pi}{2}; \frac{3\pi}{4}\right]$$

Exercice30: (***) On pose:

$$E(x) = \sin\left(2x + \frac{\pi}{4}\right) - \cos\left(2x + \frac{3\pi}{4}\right) \text{ avec } x \in \mathbb{R}$$

- 1) Calculer : E(0) et $E(\pi)$
- 2) Montrer que : $E(x) = 2\sin\left(2x + \frac{\pi}{4}\right)$

Pour tout $x \in \mathbb{R}$.

- 3) Résoudre dans \mathbb{R} l'équation: (E) $E(x) = -\sqrt{2}$
- 4) Résoudre dans $[0; \pi]$ l'inéquation: (I):

$$E(x) \le -\sqrt{2}$$

Solution: 1)
$$E(x) = \sin\left(2x + \frac{\pi}{4}\right) - \cos\left(2x + \frac{3\pi}{4}\right)$$

1) Calcul de : E(0) et $E(\pi)$

$$E(0) = \sin\left(2\times 0 + \frac{\pi}{4}\right) - \cos\left(2\times 0 + \frac{3\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2} - \cos\left(\pi - \frac{\pi}{4}\right)$$

$$E(0) = \frac{\sqrt{2}}{2} + \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2}$$

$$E\left(\pi\right) = \sin\left(2 \times \pi + \frac{\pi}{4}\right) - \cos\left(2 \times \pi + \frac{3\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{3\pi}{4}\right) = \sqrt{2}$$

Car $\sin(2\pi + x) = \sin x$ et $\cos(2\pi + x) = \cos x$

2) Démontrons que : $E(x) = 2\sin\left(2x + \frac{\pi}{4}\right)$

pour tout $x \in \mathbb{R}$?

$$E(x) = \sin\left(2x + \frac{\pi}{4}\right) - \cos\left(2x + \frac{3\pi}{4}\right) = \sin\left(2x + \frac{\pi}{4}\right) - \cos\left(2x + \frac{\pi}{4} + \frac{\pi}{2}\right)$$

Donc :

$$E(x) = \sin\left(2x + \frac{\pi}{4}\right) - \left(-\sin\left(2x + \frac{\pi}{4}\right)\right) = 2\sin\left(2x + \frac{\pi}{4}\right)$$

3) Résolution dans \mathbb{R} de l'équation : $E(x) = -\sqrt{2}$

$$E(x) = -\sqrt{2}$$
 Équivaut à : $2\sin\left(2x + \frac{\pi}{4}\right) = -\sqrt{2}$

Si et seulement si : $\sin\left(2x + \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$

Équivaut à :

$$2x + \frac{\pi}{4} = -\frac{\pi}{4} + 2k\pi$$
 ou $2x + \frac{\pi}{4} = \pi - \left(-\frac{\pi}{4}\right) + 2k\pi$

Équivaut à :
$$x = -\frac{\pi}{4} + k\pi$$
 ou $x = \frac{\pi}{2} + k\pi$

Par conséquent :
$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{4} + k\pi; \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$$

4) Résolution dans $[0; \pi]$ de l'inéquation (I):

$$E(x) \le -\sqrt{2}$$
 Équivaut à : $2\sin\left(2x + \frac{\pi}{4}\right) \le -\sqrt{2}$

Équivaut à :
$$\sin\left(2x + \frac{\pi}{4}\right) \le -\frac{\sqrt{2}}{2}$$

On pose:
$$2x + \frac{\pi}{4} = X$$

On a : $0 \le x \le \pi$ donc : $0 \le 2x \le 2\pi$

Donc:
$$\frac{\pi}{4} \le 2x + \frac{\pi}{4} \le 2\pi + \frac{\pi}{4}$$

càd:
$$\frac{\pi}{4} \le 2x + \frac{\pi}{4} \le \frac{9\pi}{4}$$

Donc:

$$\frac{\pi}{4} \le X \le \frac{9\pi}{4}$$

Et par suite la résolution de

l'inéquation (I)

dans l'intervalle:

 $[0;\pi]$ se ramène la résolution de

 $5\pi/4$ $7\pi/4$ l'inéquation:

 $\pi/4 \equiv 9\pi/4$

Tronc commun Sciences BIOF

$$\sin X \le -\frac{\sqrt{2}}{2}$$

Dans l'intervalle : $\left[\frac{\pi}{4}, \frac{9\pi}{4}\right]$

(Voir figure)

$$\sin X \le -\frac{\sqrt{2}}{2}$$
 Équivaut à : $\frac{5\pi}{4} \le X \le \frac{7\pi}{4}$

C'est-à-dire:
$$\frac{5\pi}{4} \le 2x + \frac{\pi}{4} \le \frac{7\pi}{4}$$

Équivaut à :
$$\frac{5\pi}{4} - \frac{\pi}{4} \le 2x \le \frac{7\pi}{4} - \frac{\pi}{4}$$
 d'où : $\frac{\pi}{2} \le x \le \frac{3\pi}{4}$

Par conséquent :
$$S_{[0;\pi]} = \left[\frac{\pi}{2}, \frac{3\pi}{4}\right]$$

Exercice31: (***) On pose :

$$F(x) = \frac{1}{\cos^2 x + 2\sin^2 x} \text{ avec } x \in [0; \pi]$$

1) Calculer:
$$F(0)$$
 et $F(\frac{\pi}{4})$ et $F(\frac{\pi}{6})$

2) Montrer que :
$$F(\pi - x) = F(x)$$
 pour tout $x \in [0; \pi]$

3) En déduire :
$$F(\pi)$$
 et $F\left(\frac{3\pi}{4}\right)$ et $F\left(\frac{5\pi}{6}\right)$

4) Excripe
$$F(x)$$
 en fonction $\tan x$ pour tout $x \neq \frac{\pi}{2}$

5) Résoudre dans
$$[0; \pi]$$
 l'équation: $F(x) = \frac{4}{7}$; (E)

6) Résoudre dans
$$[0;\pi]$$
 l'inéquation: $F(x) > \frac{4}{7}$; (I)

Solution:1)
$$F(x) = \frac{1}{\cos^2 x + 2\sin^2 x}$$
 avec $x \in [0; \pi]$

$$F(0) = \frac{1}{\cos^2 0 + 2\sin^2 0} = \frac{1}{1^2 + 2 \times 0} = 1$$

$$F\left(\frac{\pi}{4}\right) = \frac{1}{\cos^2\frac{\pi}{4} + 2\sin^2\frac{\pi}{4}} = \frac{1}{\left(\frac{\sqrt{2}}{2}\right)^2 + 2\times\left(\frac{\sqrt{2}}{2}\right)^2} = \frac{1}{\frac{1}{2} + 1} = \frac{1}{\frac{3}{2}} = \frac{2}{3}$$

$$F\left(\frac{\pi}{6}\right) = \frac{1}{\cos^2\frac{\pi}{6} + 2\sin^2\frac{\pi}{6}} = \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2 + 2\times\left(\frac{1}{2}\right)^2} = \frac{1}{\frac{3}{4} + \frac{1}{2}} = \frac{1}{\frac{5}{4}} = \frac{4}{5}$$

2) Montrons que :

$$F(\pi - x) = F(x)$$
 pour tout $x \in [0; \pi]$?

$$F(\pi - x) = \frac{1}{\cos^2(\pi - x) + 2\sin^2(\pi - x)}$$

$$F(\pi - x) = \frac{1}{(-\cos x)^2 + 2\sin^2 x} = F(x)$$

$$F(\pi - x) = \frac{1}{\cos^2 x + 2\sin^2 x} = F(x)$$

3) Déduction de :
$$F(\pi)$$
 et $F\left(\frac{3\pi}{4}\right)$ et $F\left(\frac{5\pi}{6}\right)$

$$F(\pi) = F(\pi - \pi) = F(0) = 1$$

$$F\left(\frac{3\pi}{4}\right) = F\left(\pi - \frac{3\pi}{4}\right) = F\left(\frac{\pi}{4}\right) = \frac{2}{3}$$

et
$$F\left(\frac{5\pi}{6}\right) = F\left(\pi - \frac{5\pi}{6}\right) = F\left(\frac{\pi}{6}\right) = \frac{4}{5}$$

4) Ecriture de F(x) en fonction tan x:

$$F(x) = \frac{1}{\cos^2 x + 2\sin^2 x} = \frac{1}{\cos^2 x \left(1 + 2\frac{\sin^2 x}{\cos^2 x}\right)} = \frac{1}{\cos^2 x} \times \frac{1}{1 + 2\tan^2 x}$$

$$F(x) = (1 + \tan^2 x) \times \frac{1}{1 + 2\tan^2 x} \text{ Car} : \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

Par suite :
$$F(x) = \frac{1 + \tan^2 x}{1 + 2 \tan^2 x}$$

5) Résolution dans $[0; \pi]$ de l'équation: F(x) = 0

$$F(x) = \frac{4}{7}$$
 Équivaut à : $\frac{1 + \tan^2 x}{1 + 2 \tan^2 x} = \frac{4}{7}$

Équivaut à :
$$7(1 + \tan^2 x) = 4(1 + 2\tan^2 x)$$

Équivaut à :
$$7 + 7 \tan^2 x = 4 + 8 \tan^2 x$$

Équivaut à :
$$tan^2 x = 3$$

Équivaut à :
$$\tan x = \sqrt{3}$$
 ou $\tan x = -\sqrt{3}$

Équivaut à :
$$\tan x = \tan\left(\frac{\pi}{3}\right)$$
 ou $\tan x = \tan\left(-\frac{\pi}{3}\right)$

Équivaut à :
$$x = \frac{\pi}{3} + k\pi$$
 ou $x = -\frac{\pi}{3} + k\pi$

• Encadrement de
$$\frac{\pi}{3} + k\pi$$
 : $0 \le \frac{\pi}{3} + k\pi \le \pi$ et $k \in \mathbb{Z}$

Donc
$$0 \le \frac{1}{3} + k \le 1$$
 équivaut à : $-\frac{1}{3} \le k \le \frac{2}{3}$

Donc
$$k = 0$$
 on remplace on trouve $x_1 = \frac{\pi}{2}$

• Encadrement de
$$-\frac{\pi}{3} + k\pi$$
 : $0 \le -\frac{\pi}{3} + k\pi \le \pi$

et
$$k \in \mathbb{Z}$$

Donc
$$0 \le -\frac{1}{3} + k \le 1$$
 équivaut à : $\frac{1}{3} \le k \le \frac{4}{3}$

Donc
$$k=1$$
 on remplace on trouve $x_2 = \frac{2\pi}{3}$

Donc
$$S_{[0;\pi]} = \left\{ \frac{\pi}{3}; \frac{2\pi}{3} \right\}$$

6) Résolution dans $[0; \pi]$ de l'inéquation: (I)

$$F(x) > \frac{4}{7}$$
 Équivaut à : $\frac{1 + \tan^2 x}{1 + 2\tan^2 x} > \frac{4}{7}$

Équivaut à :
$$7(1+\tan^2 x) > 4(1+2\tan^2 x)$$

Équivaut à :
$$7(1+\tan^2 x) > 4(1+2\tan^2 x)$$

Équivaut à :
$$7 + 7 \tan^2 x > 4 + 8 \tan^2 x$$

Équivaut à :
$$-\tan^2 x > -3$$

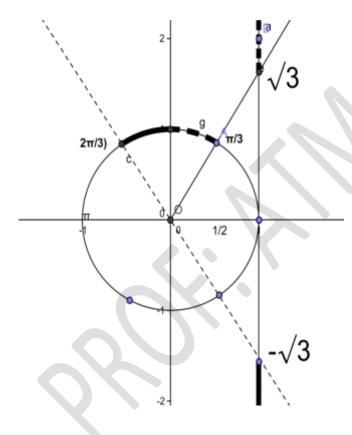
Équivaut à :
$$\tan^2 x < 3$$
 Équivaut à : $\tan^2 x - \sqrt{3}^2 < 0$

Équivaut à :
$$(\tan x - \sqrt{3})(\tan x + \sqrt{3}) < 0$$

$$\tan x - \sqrt{3} < 0$$
 Équivaut à : $\tan x < \sqrt{3}$

$$\tan x - \sqrt{3} > 0$$
 Équivaut à : $\tan x > \sqrt{3}$

$$\tan x + \sqrt{3} < 0$$
 Équivaut à : $\tan x < -\sqrt{3}$



Donc le tableau de signes suivant :

x	0 3	<u> </u>	$\frac{\pi}{2}$ $\frac{2}{3}$	$\frac{\pi}{3}$ π
<i>tanx</i> −√3	- (+	_	ı
<i>tanx</i> +√3	+	+	- (+
produit	- (+	+ (-

$$S = \left[0; \frac{\pi}{3}\right] \cup \left[\frac{2\pi}{3}; \pi\right]$$

Exercice32: (***)1) Résoudre dans \mathbb{R} les équations suivantes :

1)
$$2\cos^2 x - 3\sqrt{3}\cos x + 3 = 0$$
 (E_1)

2)
$$2\sin^2 x - 3\sin x + 1 = 0$$
 (E_2)

3)
$$\sqrt{3} \tan^2 x + (\sqrt{3} - 1) \tan x - 1 = 0 (E_3)$$

Solution:1) $2\cos^2 x - 3\sqrt{3}\cos x + 3 = 0$ (E_1)

On utilise un changement de variable : on pose $t = \cos x$

L'équation
$$(E_1)$$
 devienne : $2t^2 - 3\sqrt{3}t + 3 = 0$

On cherche les racines du trinôme $2t^2 - 3\sqrt{3}t + 3$: Calcul du discriminant réduit :

$$\Delta = \left(-3\sqrt{3}\right)^2 - 4 \times 2 \times 3 = 3$$

Les racines sont :
$$t_1 = \frac{-(-3\sqrt{3}) + \sqrt{3}}{4} = \frac{4\sqrt{3}}{4} = \sqrt{3}$$

Et
$$t_2 = \frac{-(-3\sqrt{3}) - \sqrt{3}}{4} = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$$

Donc
$$\cos x = \frac{\sqrt{3}}{2}$$
 ou $:\cos x = \sqrt{3}$

(qui n'a pas de solution car $\sqrt{3} > 1$)

Donc:
$$\cos x = \frac{\sqrt{3}}{2}$$
 Équivaut à : $\cos x = \cos\left(\frac{\pi}{6}\right)$

Équivaut à :
$$x = \frac{\pi}{6} + 2k\pi$$
 ou $x = -\frac{\pi}{6} + 2k\pi$

Donc les solutions de l'équation dans \mathbb{R} sont :

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\} \cup \left\{ \frac{\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\}$$

2)
$$2\sin^2 x - 3\sin x + 1 = 0$$
 (E_2)

On utilise un changement de variable :

On pose
$$t = \sin x$$

L'équation (E_2) devienne : $2t^2 - 3t + 1 = 0$

On cherche les racines du trinôme $2t^2 - 3t + 1$:

Calcul du discriminant réduit : $\Delta = (-3)^2 - 4 \times 2 \times 1 = 1$

Les racines sont :
$$t_1 = \frac{-(-3) + \sqrt{1}}{4} = \frac{4}{4} = 1$$

Et
$$t_2 = \frac{-(-3)-\sqrt{1}}{4} = \frac{2}{4} = \frac{1}{2}$$

Donc:
$$\sin x = 1$$
 et $\sin x = \frac{1}{2}$

Donc:
$$\sin x = \sin\left(\frac{\pi}{2}\right)$$
 et $\sin x = \sin\left(\frac{\pi}{6}\right)$

Équivaut à :
$$x = \frac{\pi}{2} + 2k\pi$$
 ou $x = \frac{\pi}{6} + 2k\pi$

ou
$$x = \frac{5\pi}{6} + 2k\pi$$
 avec $k \in \mathbb{Z}$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{2} + 2k\pi / k \in \mathbb{Z} \right\} \cup \left\{ \frac{\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\} \cup \left\{ \frac{5\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\}$$

3)
$$\sqrt{3} \tan^2 x + (\sqrt{3} - 1) \tan x - 1 = 0$$
 (E_3)

L'équation (E_3) est définie dans si et seulement

$$si: x \neq \frac{\pi}{2} + k\pi$$

On utilise un changement de variable :

On pose $t = \tan x$

L'équation
$$(E_2)$$
 devienne : $\sqrt{3} t^2 + (\sqrt{3} - 1)t - 1 = 0$

On cherche les racines du trinôme $2t^2 - 3t + 1$: Calcul du discriminant réduit :

$$\Delta = \left(-\left(\sqrt{3} - 1\right)\right)^2 - 4 \times \sqrt{3} \times \left(-1\right) = 4 + 2\sqrt{3} = \left(\sqrt{3} + 1\right)^2$$

Les racines sont

$$t_1 = \frac{-\sqrt{3} + 1 + \left|\sqrt{3} + 1\right|}{2\sqrt{3}} = \frac{-\sqrt{3} + 1 + \sqrt{3} + 1}{2\sqrt{3}} = \frac{2}{2\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

et

$$t_2 = \frac{\sqrt{3} - 1 - \left|\sqrt{3} + 1\right|}{2\sqrt{3}} = \frac{-\sqrt{3} + 1 - \sqrt{3} - 1}{2\sqrt{3}} = -\frac{2\sqrt{3}}{2\sqrt{3}} = -1$$

Donc: $\tan x = -1$ et $\tan x = \frac{\sqrt{3}}{3}$

Donc:
$$\tan x = \tan\left(-\frac{\pi}{4}\right)$$
 et $\tan x = \tan\left(\frac{\pi}{6}\right)$

Équivaut à :
$$x = -\frac{\pi}{4} + k\pi$$
 ou $x = \frac{\pi}{6} + k\pi$ avec $k \in \mathbb{Z}$

Donc les solutions de l'équation dans \mathbb{R}

Sont:

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{4} + k\pi / k \in \mathbb{Z} \right\} \cup \left\{ \frac{\pi}{6} + k\pi / k \in \mathbb{Z} \right\}$$

Exercice33: (***)1) a) Vérifier que :

$$5 - 2\sqrt{6} = \left(\sqrt{3} - \sqrt{2}\right)^2$$

b) Résoudre dans $[0; 2\pi]$ l'équation suivante :

$$4\cos^2 x - 2(\sqrt{2} + \sqrt{3})\cos x + \sqrt{6} = 0 (E)$$

2) Résoudre dans $[0; 2\pi]$ les inéquations

suivantes : $2\cos x - \sqrt{2} > 0$ et $2\cos x - \sqrt{3} < 0$

3) Résoudre dans $[0; 2\pi]$ l'inéquation suivante:

$$4\cos^2 x - 2\left(\sqrt{2} + \sqrt{3}\right)\cos x + \sqrt{6} \ge 0$$

Solution:1) a)

$$(\sqrt{3}-\sqrt{2})^2 = (\sqrt{3})^2 - 2\sqrt{3}\sqrt{2} + (\sqrt{2})^2 = 3 - 2\sqrt{6} + 2 = 5 - 2\sqrt{6}$$

b)
$$4\cos^2 x - 2(\sqrt{2} + \sqrt{3})\cos x + \sqrt{6} = 0$$

On utilise un changement de variable :

On pose $t = \cos x$

L'équation devienne : $4t^2 - 2(\sqrt{2} + \sqrt{3})t + \sqrt{6} = 0$

On cherche les racines du trinôme

$$t^2 - 2(\sqrt{2} + \sqrt{3})t + \sqrt{6}$$
:

Calcul du discriminant réduit :

$$\Delta' = (\sqrt{3} + \sqrt{2})^2 - 4\sqrt{6} = (\sqrt{3})^2 + 2\sqrt{3}\sqrt{2} + (\sqrt{2})^2 - 4\sqrt{6}$$

$$\Delta' = 3 + 2\sqrt{6} + 2 - 4\sqrt{6} = 5 - 2\sqrt{6} = (\sqrt{3} - \sqrt{2})^2$$

Les racines sont :

$$t_1 = \frac{\left(\sqrt{2} + \sqrt{3}\right) + \sqrt{\left(\sqrt{3} - \sqrt{2}\right)^2}}{4} = \frac{\left(\sqrt{2} + \sqrt{3}\right) + \left|\sqrt{3} - \sqrt{2}\right|}{4} = \frac{\left(\sqrt{2} + \sqrt{3}\right) + \left(\sqrt{3} - \sqrt{2}\right)}{4} = \frac{\sqrt{3}}{2}$$

et

$$t_2 = \frac{\left(\sqrt{2} + \sqrt{3}\right) - \sqrt{\left(\sqrt{3} - \sqrt{2}\right)^2}}{4} = \frac{\left(\sqrt{2} + \sqrt{3}\right) - \left|\sqrt{3} - \sqrt{2}\right|}{4} = \frac{\left(\sqrt{2} + \sqrt{3}\right) - \left(\sqrt{3} - \sqrt{2}\right)}{4} = \frac{\sqrt{2}}{2}$$

Donc
$$\cos x = \frac{\sqrt{2}}{2}$$
 et $\cos x = \frac{\sqrt{3}}{2}$

•
$$\cos x = \frac{\sqrt{3}}{2}$$
 Équivaut à : $\cos x = \cos\left(\frac{\pi}{6}\right)$

Équivaut à :
$$x = \frac{\pi}{6} + 2k\pi$$
 ou $x = -\frac{\pi}{6} + 2k\pi$

Avec
$$k \in \mathbb{Z}$$
 et $x \in [0; 2\pi]$

Après avoir encadré ces solutions on va trouver :

$$x_1 = \frac{\pi}{6}$$
 et $x_1 = \frac{11\pi}{6}$

Tronc commun Sciences BIOF

•
$$\cos x = \frac{\sqrt{2}}{2}$$
 Équivaut à : $\cos x = \cos\left(\frac{\pi}{4}\right)$

Équivaut à :
$$x = \frac{\pi}{4} + 2k\pi$$
 ou $x = -\frac{\pi}{4} + 2k\pi$

Avec:
$$k \in \mathbb{Z}$$
 et $x \in [0; 2\pi]$

Après avoir encadré ces solutions on va trouver :

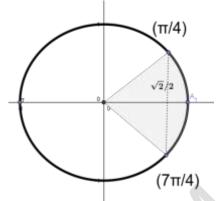
$$x_2 = \frac{\pi}{4}$$
 et $x_4 = \frac{7\pi}{4}$

Finalement on a :
$$S_{[0;2\pi]} = \left\{ \frac{\pi}{6}; \frac{\pi}{4}; \frac{11\pi}{6}; \frac{7\pi}{4} \right\}$$

2) a)Résolution dans $[0; 2\pi]$ de l'inéquation:

$$2\cos x - \sqrt{2} > 0$$

$$2\cos x - \sqrt{2} > 0$$
Équivaut à :
$$\cos x > \frac{\sqrt{2}}{2}$$

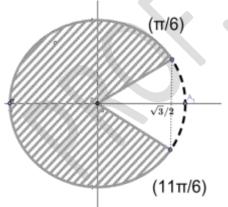


Donc
$$S = \left[0; \frac{\pi}{4} \left[\cup \right] \frac{7\pi}{4}; 2\pi \right]$$

2) b) Résolution dans $[0; 2\pi]$ de l'inéquation:

$$2\cos x - \sqrt{3} < 0$$

$$2\cos x - \sqrt{3} < 0$$
 Équivaut à : $\cos x < \frac{\sqrt{3}}{2}$



Donc
$$S = \left| \frac{\pi}{6}; \frac{11\pi}{6} \right|$$

3) Résolution dans $[0; 2\pi]$ de l'inéquation:

$$4\cos^2 x - 2\left(\sqrt{2} + \sqrt{3}\right)\cos x + \sqrt{6} \ge 0$$

$$4\cos^2 x - 2\left(\sqrt{2} + \sqrt{3}\right)\cos x + \sqrt{6} \ge 0$$

Équivaut à :
$$4\left(\cos x - \frac{\sqrt{3}}{2}\right)\left(\cos x - \frac{\sqrt{2}}{2}\right) \ge 0$$

Équivaut à:
$$(2\cos x - \sqrt{3})(2\cos x - \sqrt{2}) \ge 0$$

Et par suite le tableau suivant :

x	0 8	3	7	π <u>11</u>	$\frac{\pi}{5}$ 2π
$2cosx$ – $\sqrt{2}$	+	+	- (+	+
$2cosx$ – $\sqrt{3}$	+ () –	_	- (+
produit	+ () – () + (- () +

Donc:
$$S = \left[0; \frac{\pi}{6}\right] \cup \left[\frac{\pi}{4}; \frac{7\pi}{4}\right] \cup \left[\frac{11\pi}{6}; 2\pi\right]$$