http:// xriadiat.e-monsite.com

Exercice1 : Donner la négation et la valeur de vérité de chacune des propositions suivantes

- 1) P: " $\forall x \in \mathbb{R} / x^2 > 0$ "
- 2) $P: "\exists x \in \mathbb{R} / x^2 2 = 0"$
- 3) $P: x \in [1;2[$
- 4) P: $\forall n \in \mathbb{N} / \frac{n}{2} \in \mathbb{N}$ "
- 5) $P: (\forall x \in \mathbb{R}); -1 \le \cos x \le 1$
- 6) $P: (\forall n \in \mathbb{N}); (\exists m \in \mathbb{N}): n \prec m$
- 7) $P: (\exists n \in \mathbb{N}) \ 2n+1 \text{ est pair}$
- 8) $P: (\forall n \in \mathbb{N}); \sqrt{n} \in \mathbb{N}$
- 9) $P: (\forall x \in \mathbb{R}); (\exists y \in \mathbb{R}): y x > 0$
- 10) $P: (\exists !x \in \mathbb{R}); 2x + 4 = 0$
- 11) $P: (\exists !x \in \mathbb{R}); x^2 = 2$
- 12) $P: (\exists x \in \mathbb{Z}); \frac{x}{4} \in \mathbb{Z}$
- 13) $P: (\forall x \in \mathbb{R}); (\exists y \in \mathbb{R}): y^2 = x$

Solution:

- 1) \overline{P} : " $\exists x \in \mathbb{R} / x^2 \le 0$ " et on a P: est fausse
- 2) \overline{P} " $\forall x \in \mathbb{R} / x^2 2 \neq 0$ " et on a P: est vraie
- 3) \overline{P} : $x \notin [1;2[$
- 4) $\overline{P} \exists n \in \mathbb{N} / \frac{n}{2} \notin \mathbb{N}$ " et on a P: est fausse
- 5) \overline{P} $(\exists x \in \mathbb{R})$; $\cos x \succ 1$ ou $\cos x \prec -1$ et on a P: est vraie
- 6) $\overline{P}(\exists n \in \mathbb{N}); (\forall m \in \mathbb{N}) : n \ge m$ et on a P: est vraie
- 7) \overline{P} $(\forall n \in \mathbb{N})$ 2n+1 est impair P: est fausse
- 8) \overline{P} $(\exists n \in \mathbb{N}); \sqrt{n} \notin \mathbb{N}$ et on a P: est vraie
- \overline{P} 9)($\exists x \in \mathbb{R}$);($\forall y \in \mathbb{R}$): $y x \le 0$ et on a P: est fausse
- 10) $P: (\exists ! x \in \mathbb{R}); 2x + 4 = 0$ on a P: est vraie
- 11) $P: (\exists ! x \in \mathbb{R}); x^2 = 2$ on a P: est fausse
- 12) \overline{P} $(\forall x \in \mathbb{Z}); \frac{x}{4} \notin \mathbb{Z}$ et on a P: est vraie
- 13) $\overline{P}(\exists x \in \mathbb{R}); (\forall y \in \mathbb{R}): y^2 = x \text{ et on a } P : \text{est fausse}$

Exercice 2 Ecrire à l'aide de quantificateurs les propositions suivantes :

1. Le carré de tout réel est positif.

Prof/ATMANI NAJIB

- 2. Certains réels sont strictement supérieurs à leur carré.
- 3. Aucun entier n'est supérieur à tous les autres.
- 4. Tous les réels ne sont pas des quotients d'entiers.
- 5. Il existe un entier multiple de tous les autres.
- 6; Entre deux réels distincts, il existe un rationnel.

Solution:

- 1. " $\forall x \in \mathbb{R} / x^2 \ge 0$ "
- 2. " $\exists x \in \mathbb{R}, x \succ x^2$ "
- 3. $(\forall n \in \mathbb{N})$; $(\exists m \in \mathbb{N})$: $n \prec m$
- $4. (\exists x \in \mathbb{R}) : (\forall n \in \mathbb{Z}); (\forall m \in \mathbb{N}^*) : x \neq \frac{n}{m}$
- $5.(\exists n \in \mathbb{N}); (\forall m \in \mathbb{N})(\exists k \in \mathbb{N}): n = m \times k$
- 6. $(\forall x \in \mathbb{R})$; $(\forall y \in \mathbb{R})/x \prec y \Rightarrow \exists z \in \mathbb{Q}/x \prec z \prec y$

Exercice 3: $x \in \mathbb{R}$; $y \in \mathbb{R}$

Montrer que : $\begin{cases} 0 \le x < 2 \\ 0 \le y < 2 \end{cases} \Rightarrow \frac{1}{x} + \frac{1}{y} > 1$

Solution: $\begin{cases} 0 \le x < 2 \\ 0 \le y < 2 \end{cases} \Rightarrow \begin{cases} \frac{1}{x} > \frac{1}{2} \\ \frac{1}{y} > \frac{1}{2} \Rightarrow \frac{1}{x} + \frac{1}{y} > \frac{1}{2} + \frac{1}{2} \end{cases}$ $\Rightarrow \frac{1}{x} + \frac{1}{y} > 1$

Exercice 4: $x \in \mathbb{R}^+$ Montrer que :

$$\frac{1}{1+\sqrt{x}} = 1 - \sqrt{x} \Rightarrow x = 0$$

Solution: $\frac{1}{1+\sqrt{x}} = 1-\sqrt{x} \Rightarrow (1+\sqrt{x})(1-\sqrt{x}) = 1$

$$\Rightarrow 1 + (\sqrt{x})^2 = 1 \Rightarrow 1 + x = 1 \Rightarrow x = 0$$

Exercice 5: 1) Montrer que:

$$(\forall (a;b) \in \mathbb{R}^2)$$
: $a^2 + b^2 = 0 \Rightarrow a = 0$ et $b = 0$

2) $x \in \mathbb{R}^+$ et $y \in \mathbb{R}^+$ Montrer que:

$$x + y + 2 = 2\sqrt{x} + 2\sqrt{y} \Rightarrow x = y = 1$$

Solution: 1) $a^2 + b^2 = 0 \Rightarrow a^2 = -b^2 \Rightarrow a^2 \in \mathbb{R}^-$

Or on sait que $a^2 \in \mathbb{R}^+$ donc $a^2 \in \mathbb{R}^+ \cap \mathbb{R}^-$ donc $a^2 = 0$ donc a = 0

Et puisque $a^2 + b^2 = 0$ alors b = 0

 $x + y + 2 = 2\sqrt{x} + 2\sqrt{y} \Rightarrow x - 2\sqrt{x} + 1 + y - 2\sqrt{y} + 1 = 0$

$$\Rightarrow (\sqrt{x} - 1)^2 + (\sqrt{y} - 1)^2 = 0 \Rightarrow \sqrt{x} - 1 = 0 \text{ et}$$

 $\sqrt{y} - 1 = 0$ d'apres1)

$$\Rightarrow \sqrt{x} = 1$$
 et $\sqrt{y} = 1 \Rightarrow x = 1$ et $y = 1$

Donc: $x + y + 2 = 2\sqrt{x} + 2\sqrt{y} \Rightarrow x = y = 1$

Exercice 6: Montrer que:

$$(\forall (a;b) \in \mathbb{R}^2): a^2 + b^2 = 1 \Longrightarrow |a+b| \le \sqrt{2}$$

Solution : 1) supposons que : $a^2 + b^2 = 1$

Or on sait que $\forall (a;b) \in \mathbb{R} : (a-b)^2 \ge 0$

Donc: $a^2 - 2ab + b^2 \ge 0$ et puisque: $a^2 + b^2 = 1$ alors:

$$1-2ab \ge 0$$
 Donc $2ab \le 1$ et $a^2+b^2=1$

Par suite :
$$a^2 + b^2 + 2ab \le 2$$
 donc $(a+b)^2 \le 2$

donc
$$\sqrt{(a+b)^2} \le \sqrt{2}$$
 donc $|a+b| \le \sqrt{2}$

Or on sait que $a^2 \in \mathbb{R}^+$ donc $a^2 \in \mathbb{R}^+ \cap \mathbb{R}^-$ donc $a^2 = 0$ donc a = 0

Et puisque $a^2+b^2=0$ alors b=0

2)

$$x + y + 2 = 2\sqrt{x} + 2\sqrt{y} \Rightarrow x - 2\sqrt{x} + 1 + y - 2\sqrt{y} + 1 = 0$$

$$\Rightarrow (\sqrt{x} - 1)^2 + (\sqrt{y} - 1)^2 = 0 \Rightarrow \sqrt{x} - 1 = 0 \text{ et } \sqrt{y} - 1 = 0$$

d'apres1)
$$\Rightarrow \sqrt{x} = 1$$
 et $\sqrt{y} = 1 \Rightarrow x = 1$ et $y = 1$

Donc:
$$x + y + 2 = 2\sqrt{x} + 2\sqrt{y} \Rightarrow x = y = 1$$

Exercice 7: Montrer que si $a \in \mathbb{Q}$ et $b \in \mathbb{Q}$ alors $a+b \in \mathbb{Q}$

Solution : Prenons $a \in \mathbb{Q}$ et $b \in \mathbb{Q}$. Rappelons que les

rationnels $\mathbb Q$ sont l'ensemble des réels s'écrivant $\frac{p}{q}$ avec

 $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$.

Alors $a = \frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$; De même $b = \frac{p'}{q'}$ avec

 $p' \in \mathbb{Z}$ et $q' \in \mathbb{N}^*$ donc

$$a+b=rac{p}{q}+rac{p'}{q'}=rac{p imes q'+q imes p'}{q imes q'}$$
 . Or le numérateur

 $p \times q' + q \times p'$ est bien un élément de \mathbb{Z} ; le dénominateur $q \times q'$ est lui un élément de \mathbb{N}^* . Donc a+b s'écrit bien de

la forme $a+b=\frac{p''}{q''}$ avec $p''\in\mathbb{Z}$ et $q''\in\mathbb{N}^*$ Ainsi $a+b\in\mathbb{Q}$

Exercice 8: on considère la fonction définie sur

$$\mathbb{R}-\left\{-\frac{1}{2}\right\}$$
 par:

$$f(x) = \frac{x+2}{2x+1}$$
 Montrer que:

$$\left|x-1\right| < \frac{1}{2} \Rightarrow \frac{1}{4}\left|x-1\right| \le \left|f\left(x\right) - f\left(1\right)\right| \le \frac{1}{2}\left|x-1\right|$$

Solution:
$$|x-1| < \frac{1}{2} \Rightarrow -\frac{1}{2} < x-1 < \frac{1}{2} \Rightarrow \frac{1}{2} < x < \frac{3}{2}$$

On a:
$$f(x)-f(1) = \frac{x+2}{2x+1}-1 = \frac{x+2-2x-1}{2x+1} = \frac{1-x}{2x+1}$$

Donc:
$$|f(x)-f(1)| = \left|\frac{1-x}{2x+1}\right| = |1-x| \times \frac{1}{|2x+1|}$$

Et on a:
$$|x-1| \iff \frac{1}{2} < x < \frac{3}{2} \implies 2 < 2x + 1 < 4$$

$$\Rightarrow \frac{1}{4} < \frac{1}{|2x+1|} < \frac{1}{2} \Rightarrow \frac{1}{4} |x-1| \le |f(x)-f(1)| \le \frac{1}{2} |x-1|$$

Donc:
$$|x-1| < \frac{1}{2} \Rightarrow \frac{1}{4} |x-1| \le |f(x)-f(1)| \le \frac{1}{2} |x-1|$$

Exercice 9: Montrer que : $n \in \mathbb{N} \Rightarrow \frac{n+1}{n+2} \notin \mathbb{N}$

Solution:

On a: $n \in \mathbb{N}$ donc n+1 < n+2

donc
$$0 < \frac{n+1}{n+2} < 1$$
 donc $\frac{n+1}{n+2} \notin \mathbb{N}$

Exercice 10: Montrer que pour tout

$$\forall x \in [-2;2]: 2\sqrt{2} \succ \sqrt{4-x^2}$$
.

Solution : l'inéquation est définie ssi voici le tableau de signe :

$$\begin{array}{c|ccccc} x & -\infty & -2 & 2 & +\infty \\ \hline 4-x^2 & - & 0 & + & 0 & - \end{array}$$

$$D_I = [-2; 2]$$

Soit
$$x \in [-2; 2]$$
.

$$2\sqrt{2} - \sqrt{4 - x^2} = \frac{\left(2\sqrt{2}\right) - \left(\sqrt{4 - x^2}\right)^2}{2\sqrt{2} + \sqrt{4 - x^2}} = \frac{8 - 4 + x^2}{2\sqrt{2} + \sqrt{4 - x^2}}$$

$$2\sqrt{2} - \sqrt{4 - x^2} = \frac{4 + x^2}{2\sqrt{2} + \sqrt{4 - x^2}} > 0$$

donc
$$\forall x \in [-2; 2]: 2\sqrt{2} \succ \sqrt{4 - x^2}$$

Exercice 11: Montrer que pour tout

$$\forall x \in \mathbb{R} : |x-1| \le x^2 - x + 1.$$

Solution : Soit $x \in \mathbb{R}$. Nous distinguons deux cas.

Premier cas : x > 1 Alors|x-1| = x-1.

Calculons alors $(x^2-x+1)-(x-1)=x^2-x+1-x+1$

$$(x^2-x+1)-(x-1)=x^2-2x+1+1=(x-1)^2+1\ge 0$$
 Ainsi

$$x^2 - x + 1 \ge |x - 1|$$

Deuxième cas : x < 1. Alors |x-1| = -(x-1).

Nous obtenons

$$(x^2-x+1)+(x-1)=x^2-x+1+x-1=x^2 \ge 0$$
.

Et donc
$$x^2-x+1 \ge |x-1|$$

Conclusion : Dans tous les cas $x^2 - x + 1 \ge |x - 1|$.

Exercice 12: résoudre dans \mathbb{R} l'inéquation (E):

$$1 - \frac{x}{4} > \frac{1}{\sqrt{1+x}}$$

Solution : soit S l'ensemble des solution de (E)

et
$$x \in]-1; +\infty[$$
 on a: $x \in S \Leftrightarrow \frac{4-x}{4} \succ \frac{1}{\sqrt{1+x}}$

1 cas : si $x \in [4; +\infty[$ alors $4-x \le 0$ donc $S = \emptyset$

2 cas : si $x \in]-1;4[$ alors $4-x \ge 0$ donc

$$\frac{4-x}{4} \succ \frac{1}{\sqrt{1+x}} \Leftrightarrow \left(\frac{4-x}{4}\right)^2 \succ \left(\frac{1}{\sqrt{1+x}}\right)^2 \Leftrightarrow x\left(x^2-7x+8\right) \succ$$

$$\Leftrightarrow x \in \left]0; \frac{7 - \sqrt{17}}{2}\right] \text{ donc } S_2 = \left]0; \frac{7 - \sqrt{17}}{2}\right]$$

Donc
$$S = S_1 \cup S_2 = \left[0; \frac{7 - \sqrt{17}}{2}\right]$$

Exercice 13: résoudre dans \mathbb{R} l'inéquation (1):

$$|x-1|+2x-3 \ge 0$$

Solution : soit S l'ensemble des solution de (1)

soit $x \in \mathbb{R}$: on va déterminer le signe de : x-1

$$\begin{array}{c|cccc} x & -\infty & 1 & +\infty \\ \hline x-1 & - & 0 & + \end{array}$$

si
$$x \in [1; +\infty[$$
 alors $|x-1| = x-1$

donc l'inéquation (1) devient :

$$x-1+2x-3 \ge 0 \Leftrightarrow 3x-4 \ge 0$$

$$3x-4 \ge 0 \Leftrightarrow x \ge \frac{4}{3}$$
 donc:

$$S_1 = \left[\frac{4}{3}; +\infty\right] \cap \left[1; +\infty\right] = \left[\frac{4}{3}; +\infty\right]$$

si
$$x \in]-\infty;1]$$
 alors $|x-1| = -(x-1) = -x+1$

donc l'inéquation (1) devient :

$$-x+1+2x-3 \ge 0 \Leftrightarrow x \ge 2$$

donc
$$S_2 = [2; +\infty[\cap] -\infty; 1] = \emptyset$$

finalement:
$$S = S_1 \cup S_2 = \left[\frac{4}{3}; +\infty\right]$$

Exercice 14: Montrer que pour tout

 $\forall x \in \mathbb{R} : \sqrt{x^2 + 1} + x > 0$.

Solution : Soit $x \in \mathbb{R}$. Nous distinguons deux cas.

Premier cas: $x \ge 0$ Alors $x^2 \ge 0$ donc $x^2 + 1 \ge 1 \ge 0$

donc $\sqrt{x^2+1} \succ 0$ et on a $x \ge 0$ donc $\sqrt{x^2+1} + x \succ 0$

Deuxième cas : $x \le 0$. on a $x^2 + 1 > x^2$

donc $\sqrt{x^2+1} \succ \sqrt{x^2}$ donc $\sqrt{x^2+1} \succ |x|$ or $x \le 0$

alors on a: $\sqrt{x^2+1} \succ -x$ donc $\sqrt{x^2+1} + x \succ 0$

finalement : $\forall x \in \mathbb{R} : \sqrt{x^2 + 1} + x > 0$

Exercice 15: résoudre dans \mathbb{R} l'inéquation (1):

$$x^2 - |x - 2| + 5 = 0$$

Solution : soit S l'ensemble des solution de (1)

soit $x \in \mathbb{R}$: étudions le signe de : x-2

Premier cas: si $x \in [2; +\infty[$ alors |x-2| = x-2

donc l'équation (1) devient :

$$x^2 - (x-2) + 5 = 0 \iff x^2 - x + 7 = 0$$

$$\Delta = 1 - 28 = -27 < 0$$
 donc: $S_1 = \emptyset$

Deuxième cas : si $x \in]-\infty; 2[$ alors

$$|x-2| = -(x-2) = -x+2$$

donc l'équation (1) devient :

$$x^2 + (x-2) + 5 = 0 \iff x^2 + x + 3 = 0$$

$$\Delta = 1 - 12 = -11 < 0$$
 donc $S_2 = \emptyset$

finalement: $S = S_1 \cup S_2 = \emptyset$

Exercice 16: Montrer que n(n+1)(n+2) est un multiple

de 3 pour tout $n \in \mathbb{N}$.

Solution : soit $n \in \mathbb{N}$ on a 3 cas possibles seulement pour n

n = 3k ou n = 3k + 1 ou n = 3k + 2 avec $k \in \mathbb{N}$

1cas: n = 3k

$$n(n+1)(n+2) = 3k(3k+1)(3k+2) = 3k'$$
 Avec

$$k' = k\left(3k+1\right)\left(3k+2\right)$$

Donc n(n+1)(n+2) est un multiple de 3

 $2 \cos : n = 3k + 1$

$$n(n+1)(n+2) = (3k+1)(3k+2)(3k+3)$$

$$n(n+1)(n+2) = 3(3k+1)(3k+2)(k+1) = 3k'$$

Avec
$$k' = (3k+1)(3k+2)(k+1)$$

Donc n(n+1)(n+2) est un multiple de 3

3cas: n = 3k + 2

$$n(n+1)(n+2) = (3k+2)(3k+3)(3k+4) = 3(3k+2)(k+1)(3k+4) = 3k'$$

Avec
$$k' = (3k+2)(k+1)(3k+4)$$

Donc n(n+1)(n+2) est un multiple de 3

Conclusion : $\forall n \in \mathbb{N} \ n(n+1)(n+2)$ est un multiple de 3

Exercice 17: $x \in \mathbb{R}$ et $y \in \mathbb{R}$

Montrer que : $x \neq 2$ et $y \neq 2 \Rightarrow 2x + 2y - xy - 2 \neq 2$

Solution: soit $x \in \mathbb{R}$ et $y \in \mathbb{R}$

Utilisons un Raisonnement par contraposition:

Montrons que : $2x+2y-xy-2=2 \Rightarrow x=2$ ou y=2

On a:
$$2x+2y-xy-2=2 \implies 2x+2y-xy-4=0$$

$$\Rightarrow x(2-y)-2(2-y)=0 \Rightarrow (2-y)(x-2)=0$$

$$\Rightarrow$$
 2 - y = 0 ou x - 2 = 0 \Rightarrow y = 2 ou x = 2

Donc:
$$x \neq 2$$
 et $y \neq 2 \Rightarrow 2x + 2y - xy - 2 \neq 2$

Exercice 18: $x \in \mathbb{R}$ et $x \neq -5$

Montrer que : $x \neq -8 \Rightarrow \frac{x+2}{x+5} \neq 2$

Solution: soit $x \in \mathbb{R}$ et $y \in \mathbb{R}$

Utilisons un Raisonnement par contraposition:

Montrons que : :
$$\frac{x+2}{x+5} = 2 \implies x = -8$$

On a:
$$\frac{x+2}{x+5} = 2 \Rightarrow x+2 = 2(x+5)$$

$$\Rightarrow x+2=2x+10 \Rightarrow x=-8$$

Donc:
$$x \neq -8 \Rightarrow \frac{x+2}{x+5} \neq 2$$

Exercice 19: Soit $n \in \mathbb{N}$. Montrer que si n^2 est pair alors n est pair.

Solution : Nous supposons que n n'est pas pair Nous voulons montrer qu'alors n^2 n'est pas pair Comme n n'est pas pair il est impair et donc il existe $k \in \mathbb{N}$ tel que n = 2k + 1.

Alors
$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2k' + 1$$

avec $k' = 2k^2 + 2k \in \mathbb{N}$.

Et donc n^2 est impair.

Conclusion : nous avons montré que si n est impair alors n^2 est impair. Par contraposition ceci est équivalent à : si n^2 est pair alors n est pair.

Exercice 20: $x \in \mathbb{R}$; $y \in \mathbb{R}$

Montrer que : $x \neq y \Rightarrow (x+1)(y-1) \neq (x-1)(y+1)$

Solution: Utilisons un Raisonnement par contraposition:

Montrons que : $(x+1)(y-1) = (x-1)(y+1) \Rightarrow x = y$??

On a:
$$(x+1)(y-1)=(x-1)(y+1) \Rightarrow$$

$$xy - x + y - 1 = xy + x - y - 1$$

$$\Rightarrow -2x = -2y \Rightarrow x = y$$

Donc:
$$x \neq y \Rightarrow (x+1)(y-1) \neq (x-1)(y+1)$$

Exercice 21: Soit $n \in \mathbb{N}$ et $p \in \mathbb{N}$

Montrer que $n \times p$ est pair ou $n^2 - p^2$ est un multiple de 8 .

Solution:

- Si n ou p sont pairs alors $n \times p$ est pair
- Si n ou p sont impairs alors

$$n = 2k + 1$$
 et $p = 2k' + 1$ avec $k \in \mathbb{N}; k' \in \mathbb{N}$

Donc
$$n^2 - p^2 = (2k+1)^2 - (2k'+1)^2$$

$$n^2 - p^2 = 4(k(k+1) - k'(k'+1))$$
 et on a : $m(m+1)$

est pair

$$n^2 - p^2 = 4(2\alpha - 2\beta) = 8(\alpha - \beta) = 8k'' \text{ donc } n^2 - p^2$$

est un multiple de 8 .

Exercice 22: Soient $a \succ 0$ et $b \succ 0$ Montrer que si

$$\frac{a}{1+b} = \frac{b}{1+a} \text{ alors } a = b.$$

Solution: Nous raisonnons par l'absurde en supposant que

$$\frac{a}{1+b} = \frac{b}{1+a} \text{ et } a \neq b.$$

Comme
$$\frac{a}{1+b} = \frac{b}{1+a}$$
 alors $a(1+a) = b(1+b)$ donc

$$a+a^2=b+b^2$$
 d'où $a^2-b^2=b-a$. Cela conduit à

$$(a-b)(a+b) = -(a-b)$$
 Comme $a \neq b$ alors $a-b \neq 0$ et

donc en divisant par a-b on obtient :

a+b=-1. La somme des deux nombres positifs a et b ne peut être négative. Nous obtenons une contradiction.

Conclusion : si
$$\frac{a}{1+b} = \frac{b}{1+a}$$
 alors $a = b$.

Exercice 23: Soit f la fonction numérique définit sur $\mathbb R$

par:
$$f(x) = x^2 + 2x$$

Montrer qu'il n'existe pas de nombre positif M tel que :

$$\forall x \in \mathbb{R} \text{ on a} : f(x) \leq M$$

Solution : Nous raisonnons par l'absurde en supposant qu'il existe un nombre positif M tel que :

$$\forall x \in \mathbb{R} \text{ on a}: f(x) \leq M$$

$$f(x) \le M \Rightarrow x^2 + 2x \le M \Rightarrow x^2 + 2x + 1 \le M + 1$$

$$\Rightarrow (x+1)^2 \le M+1 \Rightarrow \sqrt{(x+1)^2} \le \sqrt{M+1} \Rightarrow$$

$$|x+1| \leq \sqrt{M+1}$$

$$\Rightarrow -\sqrt{M+1} \le x+1 \le \sqrt{M+1} \Rightarrow$$

$$-\sqrt{M+1}-1 \le x \le \sqrt{M+1}-1 \quad \forall x \in \mathbb{R}$$

Nous obtenons une contradiction car il suffit de prendre :

$$x = \sqrt{M+1}$$

Donc notre supposition est fausse donc : il n'existe pas de nombre positif M tel que : $\forall x \in \mathbb{R}$ on a : $f(x) \leq M$

Exercice 24: Montrer que : $\sqrt{2} \notin \mathbb{Q}$

Solution : Nous raisonnons par l'absurde en supposant que $\sqrt{2} \in \mathbb{O}$

Donc il existe $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$; tel que $\sqrt{2} = \frac{a}{b}$ avec

 $a \wedge b = 1$

$$\sqrt{2} = \frac{a}{b} \Rightarrow a = b\sqrt{2} \Rightarrow a^2 = (b\sqrt{2})^2$$

 $\Rightarrow a^2 = 2b^2 \Rightarrow a^2$ est pair $\Rightarrow a$ est pair

Et on a :
$$\sqrt{2} = \frac{a}{b} \Rightarrow a^2 = 2b^2 \Rightarrow 4k^2 = 2b^2 \Rightarrow$$

$$2k^2 = b^2$$

 $\Rightarrow b^{\mathbf{2}}$ est pair $\Rightarrow b$ est pair

Donc on a: $\sqrt{2} = \frac{a}{b}$ avec a est pair et b est pair

Cad: $a \land b \ne 1$ Nous obtenons une contradiction

Donc notre supposition est fausse donc $\sqrt{2} \notin \mathbb{Q}$

Exercice 25: (Contraposée ou absurde)

Soient $a; b \in \mathbb{Q}$

1)Montrer que : $a+b\sqrt{2}=0 \Rightarrow a=b=0$

2)en déduire que : $a+b\sqrt{2}=a'+b'\sqrt{2} \Rightarrow a=a'$ et b=b'

Solution :1) Nous raisonnons par l'absurde en supposant que $b \neq 0$

$$a + b\sqrt{2} = 0 \Rightarrow b\sqrt{2} = -a \Rightarrow -\frac{a}{b} = \sqrt{2}$$

Or $a; b \in \mathbb{Q}$ donc $-\frac{a}{b} \in \mathbb{Q}$ mais on sait que $\sqrt{2} \notin \mathbb{Q}$

Nous obtenons donc une contradiction

Donc b = 0 et puisque : $a + b\sqrt{2} = 0$ alors a = 0

2) supposons que : $a+b\sqrt{2}=a'+b'\sqrt{2}$ donc

 $a - a' + b\sqrt{2} - b'\sqrt{2} = 0$

donc $a-a'+\sqrt{2}(b-b')=0$ et d'après 1) on aura :

a-a'=0 et b-b'=0

donc a = a' et b = b'

Exercice 26: (absurde)

On considère l'ensemble : $A = \{1; 2; 3; 4; ...; n\}$ avec n un nombre entier impair

Et soient X_1 ; X_2 ; X_3 ; X_4 ;... ; X_n des éléments de

l'ensemble A distincts deux a deux

Montrer que : $\exists i \in A / x_i - i$ est pair

Solution : Nous raisonnons par l'absurde en supposant que :

 $\forall i \in A / x_i - i \text{ est impair}$

On a donc:

$$S = (x_1 - 1) + (x_2 - 2) + (x_3 - 3) + \dots + (x_n - n)$$
 un

nombre entier impair

Car c'est la somme d'un nombre impair de nombres impairs

Or

$$S = (x_1 + x_2 + x_3 + \dots + x_n) - (1 + 2 + 3 + \dots + n) = 0$$

est 0 est pair

Nous obtenons donc une contradiction donc :

 $\exists i \in A / x_i - i$ est pair

Exercice 27: Montrer que La proposition

 $P: (\forall x \in [0;1]): x^2 \ge x$ est fausse:

Solution: sa négation est : \overline{P} : $(\ni x \in [0;1])$: $x^2 \prec x$

On posant : $x = \frac{1}{2}$ on aura : $\left(\frac{1}{2}\right)^2 < \frac{1}{2}$ donc La proposition

 \overline{P} est vraie donc P est fausse

Exercice 28: Montrer que La proposition

 $P: (\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}): x^2 + y^2 \ge x + y \text{ est fausse}:$

Solution : sa négation est :

$$\overline{P}: (\exists x \in \mathbb{R})(\exists y \in \mathbb{R}): x^2 + y^2 \prec x + y$$

On posant:
$$x=1$$
 et $y=\frac{1}{2}$ on aura: $1^2 + \left(\frac{1}{2}\right)^2 < 1 + \frac{1}{2}$

c a d
$$\frac{5}{4} < \frac{6}{4}$$
 donc La proposition \overline{P} est vraie

donc P est fausse

Exercice 29: Montrer que La proposition

 $P: (\forall (a;b) \in \mathbb{R}^2): \sqrt{a^2 + b^2} = a + b$ est fausse:

Solution : sa négation est :

$$\overline{P}: (\exists (a;b) \in \mathbb{R}^2): \sqrt{a^2 + b^2} \neq a + b$$

On posant : a=4 et b=3 on aura :

$$\sqrt{a^2+b^2} = \sqrt{16+9} = \sqrt{25} = 5$$
 et $a+b=4+3=7$ donc La

proposition \overline{P} est vraie donc P est fausse

Exercice 30: Montrer que La proposition suivante est fausse:

« Tout entier positif est somme de trois carrés »

(Les carrés sont les 0^2 , 1^2 , 2^2 , 3^2 ,... Par exemple

 $6=1^2+1^2+2^2$.)

Démonstration. Un contre exemples : les carrés inférieurs à 7 sont 0,1,4 mais avec trois de ces nombres on ne peut faire 7.

Exercice 31: Montrer que La proposition

$$P: (\forall x \in \mathbb{R}^*): x + \frac{1}{x} \ge 2$$
 est fausse:

Solution : sa négation est : \overline{P} : $(\exists x \in \mathbb{R}^*)$: $x + \frac{1}{x} < 2$

On posant : x = -1 on aura : $-1 + \frac{1}{-1} = -2 < 2$ donc La

proposition \overline{P} est vraie donc P est fausse

Exercice 32: on considère la fonction f définie sur \mathbb{R} par :

 $f(x) = 2x^2 - x + 3$ Montrer que : f n'est ni pair ni impair

Solution : f est n'est pas pair ssi $(\exists x \in \mathbb{R})$: $f(-x) \neq f(x)$

f est n'est pas impair ssi $(\exists x \in \mathbb{R})$: $f(-x) \neq -f(x)$

On a en effet : f(1) = 4 et f(-1) = 6 donc

$$f(-1) \neq -f(1)$$
 et $f(-1) \neq f(1)$

Donc f n'est ni pair ni impair

Exercice 33: Montrer que La proposition

$$P: \forall (a;b;c;d) \in \mathbb{R}^4; \begin{cases} a \neq b \\ c \neq d \end{cases} \Rightarrow a+c \neq b+d \text{ est fausse}:$$

Solution : sa négation est : \overline{P} : $\exists (a;b;c;d) \in \mathbb{R}^4$; $\begin{cases} a \neq b \\ c \neq d \end{cases}$ et

a+c=b+d

On a: $2 \neq 3$ et $1 \neq 0$ et 2+1=3+0

donc La proposition \overline{P} est vraie donc P est fausse

Exercice 34: Montrer que La proposition

 $P: (\forall x \in \mathbb{R})(\exists y \in \mathbb{R}): x^2 - xy + y^2 = 0$ est fausse

Solution: sa négation est:

$$\overline{P}: (\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}): x^2 - xy + y^2 \neq 0$$

On posant: x=1 on aura: $1-y+y^2$ c a d y^2-y+1

$$\Delta = (-1)^2 - 4 = -3 < 0 \text{ donc}: y^2 - y + 1 > 0 \text{ donc}:$$

 $y^2 - y + 1 \neq 0$

donc La proposition \overline{P} est vraie donc P est fausse

Exercice 35: $\forall x > 0 \quad x + \frac{1}{x} \ge 2$

Solution:
$$x + \frac{1}{x} \ge 2 \Leftrightarrow \frac{x^2 + 1}{x} \ge 2 \Leftrightarrow \frac{x^2 + 1}{x} \ge 2$$

$$\Leftrightarrow \frac{x^2+1}{x} - 2 \ge 0 \Leftrightarrow \frac{x^2+1-2x}{x} \ge 0$$

$$\Leftrightarrow \frac{x^2 + 1 - 2x}{x} \ge 0 \Leftrightarrow \frac{(x - 1)^2}{x} \ge 0$$

et puisque on a : $\frac{(x-1)^2}{x} \ge 0$ donc $\forall x > 0$ $x + \frac{1}{x} \ge 2$

Exercice 36: soit $x \in \mathbb{R}$ Montrer que:

$$|x-1| \le \frac{1}{2} \Leftrightarrow \frac{2}{5} \le \frac{1}{x+1} \le \frac{2}{3}$$

Solution:

$$|x-1| \le \frac{1}{2} \Leftrightarrow -\frac{1}{2} \le x - 1 \le \frac{1}{2} \Leftrightarrow -\frac{1}{2} + 2 \le x - 1 + 2 \le \frac{1}{2} + 2$$
$$\Leftrightarrow \frac{3}{2} \le x + 1 \le \frac{5}{2} \Leftrightarrow \frac{2}{5} \le \frac{1}{x+1} \le \frac{2}{3}$$

Exercice 37 : résoudre dans \mathbb{R} l'équation (E):

$$\sqrt{x^2 + 1} = 2x$$

soit S l'ensemble des solution de l'équation (E)

Solution :

Methode1:
$$x \in S \Rightarrow \sqrt{x^2 + 1} = 2x \Rightarrow \sqrt{x^2 + 1}^2 = (2x)^2$$

$$\Rightarrow x^2 + 1 = 4x^2 \Rightarrow 3x^2 = 1 \Rightarrow x^2 = \frac{1}{3} \Rightarrow x = \frac{\sqrt{3}}{3} oux = -\frac{\sqrt{3}}{3}$$

Remarque: on ne peut pas affirmer que:

$$x = \frac{\sqrt{3}}{3}$$
 et $x = -\frac{\sqrt{3}}{3}$ sont les solutions de l'équation

Et inversement on a :
$$\sqrt{\left(-\frac{\sqrt{3}}{3}\right)^2 + 1} = \sqrt{\frac{1}{3} + 1} = \frac{2\sqrt{3}}{3} \neq -\frac{2\sqrt{3}}{3}$$

Donc:
$$-\frac{\sqrt{3}}{3} \notin S$$
 et on a: $\sqrt{\left(\frac{\sqrt{3}}{3}\right)^2 + 1} = \sqrt{\frac{1}{3} + 1} = \frac{2\sqrt{3}}{3}$

Methode2:
$$x \in S \Leftrightarrow \sqrt{x^2 + 1} = 2x$$
 et $x \ge 0 \Leftrightarrow$

$$\sqrt{x^2+1}^2 = (2x)^2$$

$$\Leftrightarrow x^2 + 1 = 4x^2 \text{ et } x \ge 0 \Leftrightarrow x^2 = \frac{1}{3} \text{ et } x \ge 0$$

$$\Leftrightarrow$$
 $(x = \frac{\sqrt{3}}{3} \text{ ou } x = -\frac{\sqrt{3}}{3}) \text{ et } x \ge 0$

Donc:
$$S = \left\{ \frac{\sqrt{3}}{3} \right\}$$

Exercice 38: $x \in \mathbb{R}$ et $y \in \mathbb{R}$

Montrer que :
$$|x-y| \le 2\sqrt{x^2 + y^2 + xy}$$

Solution: $x \in \mathbb{R}$ et $y \in \mathbb{R}$

$$|x-y| \le 2\sqrt{x^2 + y^2 + xy} \iff |x-y|^2 \le (2\sqrt{x^2 + y^2 + xy})^2$$

$$\Leftrightarrow x^2 - 2xy + y^2 \le 4x^2 + 4y^2 + 4xy$$

$$\Leftrightarrow 3x^2 + 3y^2 + 6xy \ge 0$$

$$\Leftrightarrow$$
 3 $(x^2 + 2xy + y^2) \ge 0 \Leftrightarrow x^2 + 2xy + y^2 \ge 0$

$$\Leftrightarrow (x+y)^2 \ge 0$$

On sait que
$$(x+y)^2 \ge 0$$
 (vraie)

Donc: $\forall x \in \mathbb{R}$ et $\forall y \in \mathbb{R}$: $|x-y| \le 2\sqrt{x^2 + y^2 + xy}$

Exercice 39:1) Montrer que:

$$(\forall (a;b) \in (\mathbb{R}^+)^2): a+b=0 \Leftrightarrow a=0 \text{ et } b=0$$

2) $x \in \mathbb{R}$ et $y \in \mathbb{R}$ Montrer que:

$$\sqrt{x^2+1} + \sqrt{y^2+1} = 2 \Leftrightarrow x = y = 0$$

Solution: 1)a)
$$\Rightarrow : \left(\forall (a;b) \in (\mathbb{R}^+)^2 \right) : a+b=0 \Rightarrow a=0$$

et b = 0

Supposons que ; a+b=0 et $(a \neq 0$ ou $b \neq 0)$ et $(a;b) \in (\mathbb{R}^+)^2$

Donc $a+b \succ 0$ contradiction par suite a=0 et b=0b) \Leftarrow inversement si a=0 et b=0 alors on aura a+b=0

donc:
$$(\forall (a;b) \in (\mathbb{R}^+)^2)$$
: $a+b=0 \Leftrightarrow a=0$ et $b=0$

2) $x \in \mathbb{R}$ et $y \in \mathbb{R}$

$$\sqrt{x^2 + 1} + \sqrt{y^2 + 1} = 2 \Leftrightarrow \sqrt{x^2 + 1} + \sqrt{y^2 + 1} - 2 = 0$$

$$\Leftrightarrow (\sqrt{x^2 + 1} - 1) + (\sqrt{y^2 + 1} - 1) = 0 \text{ or } \sqrt{x^2 + 1} - 1 \ge 0 \text{ et}$$

$$\sqrt{y^2 + 1} - 1 \ge 0$$

$$\Leftrightarrow \sqrt{x^2+1}-1=0$$
 et $\sqrt{y^2+1}-1=0$ $\Leftrightarrow \sqrt{x^2+1}=1$ et $\sqrt{y^2+1}=1$

$$\Leftrightarrow x^2+1=1$$
 et $y^2+1=1 \Leftrightarrow x^2=0$ et $y^2=0 \Leftrightarrow x=0$ et $y=0$

Donc:
$$\sqrt{x^2+1} + \sqrt{y^2+1} = 2 \Leftrightarrow x = y = 0$$

Exercice 40 : Montrer que : $\forall n \in \mathbb{N}; 3^n \ge 1 + 2n$.

Solution : notons P(n) La proposition suivante :

 $\forall n \in \mathbb{N}; 3^n \ge 1 + 2n$. Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \in \mathbb{N}$.

1étapes : l'initialisation :Pour n=0 nous avons $3^0 \ge 1 + 2 \times 0$ donc $1 \ge 1$.

Donc P (0) est vraie.

2étapes : d'hérédité ou Hypothèse de récurrence :

Supposons que P(n) soit vraie c'est-à-dire : $3^n \ge 1 + 2n$

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que : $3^{n+1} \ge 1 + 2(n+1)$?? c'est-à-dire

Montrons que $3^{n+1} \ge 2n + 3$??

On a : $3^n \ge 1 + 2n$ d'après l'hypothèse de récurrence donc $3^n \times 3 \ge 3 \times (1 + 2n)$

donc: $3^{n+1} \ge 6n + 3$

Or on remarque que : $6n+3 \ge 2n+3$ (on pourra faire la différence $(6n+3)-(2n+3)=4n \ge 0$)

donc: on a $6n+3 \ge 2n+3$ et $3^{n+1} \ge 6n+3$ donc $3^{n+1} \ge 2n+3$

Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence P(n) est vraie pour tout n > 0, c'est-à-dire $\forall n \in \mathbb{N}; 3^n \ge 1 + 2n$.

Exercice 41 : (Récurrence) Montrer que pour tout $n \in \mathbb{N}^*$,

$$1+2+3+...+n = \frac{n \times (n+1)}{2}$$

Solution : notons P(n) La proposition

Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \in \mathbb{N}^*$.

1étapes : l'initialisation :Pour n=1 nous avons

$$1 = \frac{1 \times (1+1)}{2} = \frac{2}{2} = 1$$
 donc $1 = 1$.

Donc P(0) est vraie.

2étapes : d'hérédité : Supposons que P(n) soit vraie c'est-

à-dire:
$$1+2+3+...+n = \frac{n \times (n+1)}{2}$$

 $3 \'{e}tapes$: Nous allons montrer que P(n+1) est vraie.

Montrons alors que:

$$1+2+3+...+n+(n+1)=\frac{(n+1)\times(n+2)}{2}$$
??

On a: 1+2+3+...+n+(n+1)=(1+2+3+...+n)+(n+1)

et on a d'après l'hypothèse de récurrence:

$$1+2+3+...+n+(n+1)=\frac{(n+1)\times(n+2)}{2}$$

dono

$$1+2+3+...+n+(n+1)=\frac{n\times(n+1)}{2}+(n+1)=(n+1)\left(\frac{n}{2}+1\right)=\frac{(n+1)(n+2)}{2}$$

Donc P(n+1) est vraie.

Conclusion: Par le principe de récurrence on a :

$$\forall n \in \mathbb{N}^*; 1+2+3+...+n = \frac{n \times (n+1)}{2}$$

Exercice 42 : Montrer par récurrence que :pour tout entier $n \ge 5$: $2^n \ge 6n$

Solution : notons P(n) La proposition : « $2^n \ge 6n$ »

1étapes : Initialisation : Pour $n = 5 : 2^5 = 32$ et

 $6\times5=30$ donc $2^5\geq6\times5$

Donc P(5) est vraie.

2étapes : d'hérédité : Supposons que P(n) soit vraie c'est-

à-dire : $2^n \ge 6n$

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que : $2^{n+1} \ge 6(n+1)$??

Or, puisque $2^n \ge 6n$ (d'après l'hypothèse de récurrence)

Donc: $2^{n} \times 2 \ge 6n \times 2$ donc $2^{n+1} \ge 12n$ (1)

Or on remarque que : $12n \ge 6(n+1)$ (2)

En effet: $12n-6(n+1)=6n-6 \ge 0$

Car: $n \ge 5$ donc $6n \ge 30$ donc $6n - 6 \ge 24 \ge 0$

On conclut par récurrence que : Pour tout $n \ge 5$:

 $2^n \ge 6n$

Exercice 43 : Montrer que : $\forall n \in \mathbb{N}$; $n^3 + 2n$ est divisible par 3

Solution: montrons $\exists k \in \mathbb{N} / n^3 + 2n = 3k$

1étapes : l'initialisation :Pour n=0 nous avons

 $0^3 + 2 \times 0 = 0$ est un multiple de3

Donc P (0) est vraie.

2étapes : d'hérédité : Supposons que P(n) soit vraie

c'est-à-dire : $\exists k \in \mathbb{N} / n^3 + 2n = 3k$

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que:

$$\exists k' \in \mathbb{N} / (n+1)^3 + 2(n+1) = 3k'$$
??

$$(n+1)^{3} + 2(n+1) = n^{3} + 3n^{2} + 3n + 1 + 2n + 2 =$$

$$= (n^{3} + 2n) + 3n^{2} + 3n + 3 = 3k + 3(n^{2} + n + 1) = 3(k + n^{2} + n + 1)$$

$$= 3(k + n^{2} + n + 1) = 3k' \text{ avec } k' = k + n^{2} + n + 1$$

Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence on a :

 $\forall n \in \mathbb{N}; n^3 + 2n$ est divisible par 3

Exercice 44 : (Récurrence) Montrer que pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} k^{2} = 1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n \times (n+1) \times (2n+1)}{6}.$$

Solution : notons P(n) La proposition

Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \in \mathbb{N}^*$.

1étapes : l'initialisation :Pour n=1 nous avons

$$1^2 = \frac{1 \times (1+1) \times (2+1)}{6} = \frac{1 \times 2 \times 3}{6} = 1$$

donc 1 = 1. Donc P(0) est vraie.

2étapes : d'hérédité : Supposons que P(n) soit vraie c'est-

à-dire :
$$\sum_{k=1}^{n} k^2 = \frac{n \times (n+1) \times (2n+1)}{6}$$

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que:

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2} = \frac{(n+1) \times (n+2) \times (2n+3)}{6}$$
??

On a:
$$1^2 + 2^2 + 3^2 + ... + n^2 + (n+1)^2 = (1^2 + 2^2 + 3^2 + ... + n^2) + (n+1)^2$$

et on a :
$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n \times (n+1) \times (2n+1)}{6}$$
 d'après

l'hypothèse de récurrence donc

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$
$$= (n+1)\left(\frac{n(2n+1)}{6} + (n+1)\right) = (n+1)\left(\frac{n(2n+1) + 6(n+1)}{6}\right)$$

$$= (n+1) \left(\frac{2n^2 + 7n + 6}{6} \right)$$

Et on remarque que : $2n^2 + 7n + 6 = (n+2)(2n+3)$

Donc:
$$1^2 + 2^2 + 3^2 + ... + n^2 + (n+1)^2 = \frac{(n+1) \times (n+2) \times (2n+3)}{6}$$

Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence on a :

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n \times (n+1) \times (2n+1)}{6}$$

Exercice 45: (Récurrence) Montrer que pour tout

 $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} k^{3} = 1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2} \times (n+1)^{2}}{4}.$$

Solution : notons P(n) La proposition

Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \in \mathbb{N}^*$.

1étapes : l'initialisation :Pour n=1 nous avons

$$1^3 = \frac{1^2 \times (1+1)^2}{4} = 1$$

donc 1 = 1. Donc P(0) est vraie.

2étapes : d'hérédité : Supposons que P(n) soit vraie c'est-

à-dire :
$$\sum_{k=1}^{n} k^3 = \frac{n^2 \times (n+1)^2}{4}$$

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que:

$$\sum_{k=1}^{n+1} k^3 = \frac{(n+1)^2 \times (n+2)^2}{4} = \left(\frac{(n+1)(n+2)}{2}\right)^2 ??$$

On a:
$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3$$

et on a :
$$\sum_{k=1}^{n} k^3 = \frac{n^2 \times (n+1)^2}{4}$$
 d'après l'hypothèse de

récurrence donc

$$\sum_{k=1}^{n+1} k^3 = \frac{n^2 \times (n+1)^2}{4} + (n+1)^3 = (n+1)^2 \left(\frac{n^2}{4} + n + 1\right) = (n+1)^2 \left(\frac{n^2 + 4n + 4}{4}\right)$$

$$= (n+1)^2 \frac{(n+2)^2}{4} = (n+1)^2 \frac{(n+2)^2}{2^2} = \left(\frac{(n+1)(n+2)}{2}\right)^2$$

Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence on a : $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} k^3 = \frac{n^2 \times (n+1)^2}{4}.$$

Exercice 46 : (Récurrence) Montrer que pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{k=n} (2k+1) = 1+3+5+...+(2n+1) = (n+1)^{2}.$$

Solution : notons P(n) La proposition

Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \in \mathbb{N}^*$.

1étapes : l'initialisation :Pour n=1 nous avons 1+3=4 et $(1+1)^2=4$ donc 4=4.

Donc P(0) est vraie.

2étapes : d'hérédité : Supposons que P(n) soit vraie c'est-

à-dire:
$$\sum_{k=1}^{k=n} (2k+1) = (n+1)^2$$

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que:

$$\sum_{k=1}^{k=n+1} (2k+1) = 1+3+5+\dots+(2n+1)+(2n+3) = (n+2)^2$$

On a:
$$\sum_{k=1}^{k=n+1} (2k+1) = \sum_{k=1}^{k=n} (2k+1) + (2n+3)$$

et on a d'après l'hypothèse de récurrence:

$$\sum_{k=1}^{k=n} (2k+1) = (n+1)^2$$

donc

$$\sum_{k=1}^{k=n+1} (2k+1) = (n+1)^2 + (2n+3) = n^2 + 2n + 1 + 2n + 3 = n^2 + 4n + 4$$

donc
$$\sum_{k=1}^{k=n+1} (2k+1) = (n+2)^2$$
 donc P(n+1) est vraie.

Conclusion: Par le principe de récurrence on a :

$$\sum_{k=1}^{k=n} (2k+1) = (n+1)^2 \quad \forall n \in \mathbb{N}^*$$

Exercice 47 : Montrer que : $\forall n \in \mathbb{N}$; $4^n + 6n - 1$ est divisible par 9

Solution : montrons que : $\exists k \in \mathbb{N} / 4^n + 6n - 1 = 9k$

1étapes : l'initialisation :Pour n=0 nous avons

$$4^0 + 6 \times 0 - 1 = 0$$
 est un multiple de 9

Donc P (0) est vraie.

2étapes : d'hérédité : Supposons que P(n) soit vraie

c'est-à-dire :
$$\exists k \in \mathbb{N} / 4^n + 6n - 1 = 9k$$
 donc $4^n = 9k - 6n + 1$

 $3 \'{e}$ tapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que:

$$\exists k' \in \mathbb{N} / 4^{n+1} + 6(n+1) - 1 = 9k'$$
??

$$4^{n+1} + 6(n+1) - 1 = 4 \times 4^n + 6n + 6 - 1$$

$$=4\times(9k-6n+1)+6n+6-1=36k+4-24n+6n+6-1$$

$$=36k+9-18n=9(4k+1-2n)=9k'$$

avec
$$k' = 4k + 1 - 2n$$

Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence on a :

$$\forall n \in \mathbb{N}; 4^n + 6n - 1$$
 est divisible par 9

Exercice 48 : Montrer que : $\forall n \in \mathbb{N}; 7^n - 1$ est divisible par 6

Solution : 1étapes : l'initialisation :Pour n=0 nous avons $7^0 - 1 = 0$ est un multiple de 6

Donc P (0) est vraie.

2étapes : d'hérédité : Supposons que P(n) soit vraie

c'est-à-dire :
$$\exists k \in \mathbb{N} / 7^n - 1 = 6k$$

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que : $\exists k' \in \mathbb{N} / 7^{n+1} - 1 = 6k'$??

$$7^{n+1} - 1 = 7 \times 7^n - 1 = 7^n \times (6+1) - 1 = 6 \times 7^n + 7^n - 1 = 6 \times 7^n + 6k$$

 $7^{n+1} - 1 = 6(7^n + k) = 6k'$ avec $k' = 7^n + k$

Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence on a :

 $\forall n \in \mathbb{N}; 7^n - 1$ est divisible par 6

Erreur classique dans les récurrences

Exercice 49 : Pour tout entier naturel n, on considère les deux propriétés suivantes :

 $P(n): 10^n - 1$ est divisible par 9

O(n): 10n + 1 est divisible par 9

- 1) Démontrer que si P(n) est vraie alors P(n + 1) est vraie.
- 2) Démontrer que si Q (n) est vraie alors Q (n + 1) est vraie.
- 3) Un élève affirme : " Donc $P\left(n\right)$ et $Q\left(n\right)$ sont vraies pour tout entier naturel n.

Expliquer pourquoi il commet une erreur grave.

- 4) Démontrer que P (n) est vraie pour tout entier naturel n.
- 5) Démontrer que Q (n) est fausse pour tout entier naturel n.

On pourra utiliser un raisonnement par l'absurde.

Exercice 50 : Soit P(n) la propriété dénie sur \mathbb{N} par :

 $7^n - 1$ Est divisible par 3

- 1) Démontrer que si P(n) est vraie alors P (n + 1) est vraie.
- 2) Que peut-on conclure

Exercice 51: $a \in \mathbb{R}$ et $b \in \mathbb{R}$ tel que : $a \in]-1;1[$ et $b \in]-1;1[$

Montrer que : $-1 \prec \frac{a+b}{1+ab} \prec 1$

Solution: $-1 < \frac{a+b}{1+ab} < 1 \Leftrightarrow \left| \frac{a+b}{1+ab} \right| < 1 \Leftrightarrow \left| a+b \right| < \left| 1+ab \right|$

 $\Leftrightarrow |a+b|^2 \prec |1+ab|^2 \Leftrightarrow a^2+b^2+2ab \prec 1+a^2b^2+2ab$

Donc: $-1 \prec \frac{a+b}{1+ab} \prec 1 \Leftrightarrow (a^2-1)(1-b^2) \prec 0$

 $\mathsf{Donc}: a \in \left] -1; 1\right[\text{ et } b \in \left] -1; 1\right[\Rightarrow -1 \prec a \prec 1 \text{ et } -1 \prec b \prec 1$

 $\Rightarrow |a| \prec 1$ et $|b| \prec 1 \Rightarrow a^2 \prec 1$ et $b^2 \prec 1 \Rightarrow a^2 - 1 \prec 0$ et

 $1-b^2 > 0$

 $\Rightarrow (a^2-1)(1-b^2) < 0$

Donc: $a \in]-1;1[$ et $b \in]-1;1[\Rightarrow -1 < \frac{a+b}{1+ab} < 1$

Exercice 52 : Traduisez les propositions suivantes en langage courant puis déterminer sa négation et la valeur de vérité :

- 1) $P: (\forall x \in \mathbb{R}); (\exists y \in \mathbb{R}): x > y$
- 2) $P: (\exists x \in \mathbb{R}); (\forall y \in \mathbb{R}): x > y$
- 3) $P: (\forall x \in \mathbb{R}); x^2 \ge 4 \Longrightarrow x \ge 2$
- 4) $P: (\exists x \in \mathbb{R}); x^2 = 4$

5)
$$P: (\forall \varepsilon > 0); \left(\exists x \in \left\{1 + \frac{1}{n}; n \in \mathbb{N}^*\right\}\right) / x < \varepsilon + 10$$

Solution:

1)Pour tout x appartenant à \mathbb{R} il existe au moins un y appartenant à \mathbb{R} tel que x est supérieur strictement a y et $\overline{P}: (\exists x \in \mathbb{R}); (\forall y \in \mathbb{R}): x \leq y$

 $P: (\forall x \in \mathbb{R}); (\exists y \in \mathbb{R}): x > y$ Est une proposition vraie car l'lorsque je prends x je peux trouver y il suffit de prendre : y = x - 1

2) il existe au moins un y appartenant à \mathbb{R} tel que Pour tout x appartenant à \mathbb{R} on a x est supérieur strictement a y et $\overline{P}: (\forall x \in \mathbb{R}); (\exists y \in \mathbb{R}): x \leq y$

P est une proposition fausse car l'lorsque je prends x je peux toujours donner à y la valeur: y = x + 1

3) $P: (\forall x \in \mathbb{R}); x^2 \ge 4 \Rightarrow x \ge 2$

Pour tout x appartenant à \mathbb{R} si x^2 est supérieur ou égal à 4 alors x est supérieur ou égal à 2

 $\overline{P}: (\exists x \in \mathbb{R}); x^2 \ge 4 \text{ et } x < 2$

P est une proposition fausse car l'lorsque je prends x = -2 on a $(-2)^2 \ge 4$ et -2 < 2

 $4) P: (\exists x \in \mathbb{R}); x^2 = 4$

il existe au moins un y appartenant à $\mathbb R$ tel que x^2 est égal à 4

 $\overline{P}:(\forall x \in \mathbb{R}); x^2 \neq 4$

P une proposition vraie car il suffit de prendre : x = 2

5)
$$P: (\forall \varepsilon \succ 0); \left(\exists x \in \left\{1 + \frac{1}{n}; n \in \mathbb{N}^*\right\}\right) / x \prec \varepsilon + 10$$

Pour tout ε supérieur strictement a 0 il existe au moins un x qui s'écrit sous la forme $1+\frac{1}{n}$ avec $n\in\mathbb{N}^*$ tel que x

est inferieur strictement a $\varepsilon + 10$ $\overline{P}: \left(\exists \varepsilon \succ 0\right); \left(\forall x \in \left\{1 + \frac{1}{n}; n \in \mathbb{N}^*\right\}\right) / x \ge \varepsilon + 10$

Soit $\varepsilon \succ 0$

 $x \prec \varepsilon + 10 \Leftrightarrow 1 + \frac{1}{n} \prec \varepsilon + 10 \Leftrightarrow \frac{1}{n} \prec \varepsilon + 9 \Leftrightarrow n \succ \frac{1}{\varepsilon + 9}$

Donc pour $n = E\left(\frac{1}{\varepsilon + 9}\right) + 1$ on prend $x = 1 + \frac{1}{n}$ et on a

 $x < \varepsilon + 10$

P Est donc une proposition vraie

Exercice 53 : A l'aide de la méthode des tables de vérité, dites si la formules $Pou\overline{P}$ est une tautologies.

Solution:

P	\overline{P}	$Pou\overline{P}$
0	1	1
1	0	1

Exercice 54 : 1. (Raisonnement direct) Soient $a \in \mathbb{R}^+$; $b \in \mathbb{R}^+$

Montrer que si $a \le b$ alors $a \le \frac{a+b}{2} \le b$ et $0 \le \sqrt{ab} \le b$

- 2. (Cas par cas) Montrer que pour tout $\forall n \in \mathbb{N}; n(n+1)$ est divisible par 2 (distinguer les n pairs des n impairs).
- 4. (Absurde) Soit $n \in \mathbb{N}^*$ Montrer que $\sqrt{n^2 + 1}$ n'est pas un entier.
- 5. (Contre-exemple) Est-ce que pour tout $x \in \mathbb{R}$ on a $x < 2 \Rightarrow x^2 < 4$?
- 6. (Récurrence) Fixons un réel $a \in \mathbb{R}^{+*}$

Montrer que : $\forall n \in \mathbb{N}; (1+a)^n \ge 1+n \times a$.

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et

exercices

Que l'on devient un mathématicien

Autre exercices

Exercice 1 : P, Q des propositions ; Ecrire la négation des propositions suivantes :

- 1. Toutes les voitures rapides sont rouges ;
- 2. Tout triangle rectangle possède un angle droit
- 3. Dans toutes les prisons tous les détenus détestent tous les gardiens
- 4. Pour tout entier x il existe un entier y tel que pour tout entier z la relation z < y implique la relation z < x + 1.
- 5. il existe un mouton écossais dont au moins un côté est noir

6. a)
$$(P \text{ et } Q)$$
 b) $(non P \text{ et } non Q)$ c) $(P \Rightarrow Q)$

Exercice 2: Supposons que les chiens aboient et que la caravane passe. Traduisez les propositions suivantes En langage propositionnel. On note p: les chiens aboient et q: la caravane passe.

- a) Si la caravane passe, alors les chiens aboient.
- b) Les chiens n'aboient pas.
- c) La caravane ne passe pas ou les chiens aboient.
- d) Les chiens n'aboient pas et la caravane ne passe pas.

Exercice 3 : Démontrer les énoncés suivants par récurrence :

1)
$$\forall n \in \mathbb{N}$$
 $n^3 - n$ est divisible par 6

2)
$$\forall n \in \mathbb{N}$$
 $n^5 - n$ est divisible par 30

3)
$$\forall n \in \mathbb{N}$$
 $n^7 - n$ est divisible par 42

Exercice 4 : Déterminer les valeurs de vérité des propositions suivantes :

- 1. (3 est un nombre impair) \Rightarrow (6 est un nombre premier)
- 2. $(\sqrt{2} \text{ est un nombre irrationnelle}) \Rightarrow [(\forall x \in \mathbb{R}) (1 + 2x < x^2)]$
- 3. (5 est positif) \Rightarrow (3 divise 18)

Exercice 5:

- $1) Donner \ une \ condition \ n\'ecessaire \ et \ pas \ suffisante \ pour \ :$
- a) $x \in [1,2]$
- b) *n* divise 6
- 2)Donner une condition suffisante et pas nécessaire pour :
- a) $x \in [1,2]$
- b) *n* divise 6.

Exercice 6 : Etudier la vérité des propositions suivantes :

$$1. \forall x \in \mathbb{R} : 2x^2 + x + 3 > 0$$

$$2. \forall (a;b) \in \mathbb{Q}^{*2} : a\sqrt{2} + b \neq 0$$

3.
$$\forall n \in \mathbb{N}^* : \frac{n+1}{n} \notin \mathbb{N}$$

Exercice 7 : écrire la négation des propositions suivantes

$$Q$$
; $(\exists x \in \mathbb{R})$: $x < 2 \Rightarrow x^2 \ge 2019$

$$P; (\forall x \in \mathbb{R}): x \neq 2 \Rightarrow x^2 \neq 4$$

Exercice 8 : Écrire à l'aide des Quantificateurs la phrase suivante :

- 1) « Pour tout nombre réel, son carré est positif ».
- 2) « Pour chaque réel, je peux trouver un entier relatif tel que leur produit soit strictement plus grand que 1 ».
- 3)« Pour tout entier n, il existe un unique réel x tel que $x \succ n$ ».

Exercice 9 : Ecrire avec des Quantificateurs les propositions suivantes puis dans chaque cas dire si la proposition est vraie ou fausse.

- 1)Tout entier naturel est pair ou impair.
- 2)Tout entier naturel est pair ou tout entier naturel est impair.
- 3)Il y a un entier plus grand que tous les entiers.

Exercice 10 : Ecrire avec des Quantificateurs les propositions suivantes :

- 1)f est constante sur $\mathbb R$ (où f est une fonction de $\mathbb R$ dans $\mathbb R$).
- 2)f n'est pas constante sur \mathbb{R}

Exercice 11 : En utilisant le raisonnement par contraposé montrer que :

si
$$x \in]1:+\infty[$$
 et $y \in]1:+\infty[$

$$x \neq y \Rightarrow x^2 - 3x \neq y^2 - 3y$$

Exercice 12 : Etudier la vérité des propositions suivantes :

$$1. \exists x \in \mathbb{R} : |x^2 - x| + 3x = 0$$

2.
$$\exists x > 0 : x^2 + 3x = 0$$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et

exercices

Que l'on devient un mathématicien

