I. Définition – Applications – Cas particuliers:

- 1) Définition :
- \vec{U} et \vec{V} deux vecteurs nuls.

Le produit scalaire des deux vecteurs \vec{U} et \vec{V} est le nombre réel noté $\vec{U}.\vec{V}$ tel que:

$$\overrightarrow{\mathbf{U}} \cdot \overrightarrow{\mathbf{V}} = \|\overrightarrow{\mathbf{U}}\| \times \|\overrightarrow{\mathbf{V}}\| \times \cos \alpha$$

avec $\|\vec{\mathbf{U}}\|$ est la norme de $\vec{\mathbf{U}}$ et $\|\vec{\mathbf{V}}\|$ la norme de $\vec{\mathbf{V}}$ et $\alpha = (\vec{\mathbf{U}}, \vec{\mathbf{V}})$

- Si l'un des vecteurs \vec{U} ou \vec{V} est nul, alors leur produit scalaire est nul \vec{c} à d $\vec{U} \cdot \vec{V} = 0$.
 - 2) Applications:
 - a) Application 1:

Calculer dans chacun des cas : \overrightarrow{AB} . \overrightarrow{AC}

a)
$$\hat{BAC} = \frac{\pi}{4}$$
; $AC = 3$; $AB = 2$

$$\hat{BAC} = \frac{3\pi}{4}$$
 ; $AC = 2$; $AB = 5$

$$\hat{BAC} = \frac{5\pi}{6}$$
 ; $AC = 4\sqrt{3}$; $AB = 3$

$$\hat{BAC} = \frac{\pi}{3}$$
 ; $AC = 4$; $AB = 5$

a) Application 2:

Soient les vecteurs \overrightarrow{AB} et \overrightarrow{AC} avec $\theta = (\overrightarrow{AB}, \overrightarrow{AC})$. Calculer $\cos \theta$ dans chacun des cas suivants:

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -18$$
; $AC = 4\sqrt{3}$; $AB = 3$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -5\sqrt{2}$$
 ; $AC = 2$; $AB = 5$

c)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 3\sqrt{2}$$
; $AC = 3$; $AB = 2$

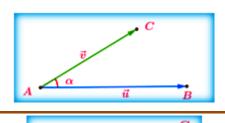
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -20$$
 ; $AC = 5$; $AB = 4$

3) Cas particuliers :

$$0 < \alpha < \pi/2$$

$$\cos \alpha > 0$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} > 0$$



 $\underline{\text{Si}} \quad \alpha = \underline{0}$ Alors $\text{Cos}\alpha = 1$, d'où:

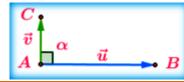
$$AB \cdot AC = AB \times AC$$

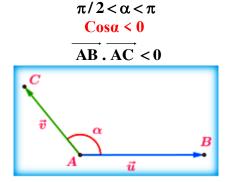
Si $\alpha = \pi$ Alors $Cos\alpha = -1$,

d'où:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AC}$$

Si $\alpha = \pi/2$ Alors $\cos \alpha = 0$, d'où:





4) Proppriété :

 \overrightarrow{U} \overrightarrow{V} deux vcteurs non nuls .

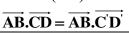
On a : $\overrightarrow{U} \cdot \overrightarrow{V} = 0$ équivalent à $\overrightarrow{U} \perp \overrightarrow{V}$

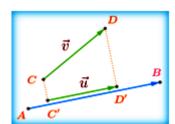
Quels que soient les vecteurs \vec{U} , \vec{V} et \vec{W} et les nombres réels x et y et z.

•
$$\vec{\mathbf{U}}^2 = \vec{\mathbf{U}} \cdot \vec{\mathbf{U}} = \|\vec{\mathbf{U}}\|^2$$
 ou $\|\vec{\mathbf{U}}\| = \sqrt{\vec{\mathbf{U}}^2}$

- $\vec{\mathbf{U}} \cdot \vec{\mathbf{V}} = \vec{\mathbf{V}} \cdot \vec{\mathbf{U}}$
- $(x.\overrightarrow{U}).\overrightarrow{V} = \overrightarrow{U}.(x.\overrightarrow{V}) = x.(\overrightarrow{U}.\overrightarrow{V})$ $(\overrightarrow{U} + \overrightarrow{V}).\overrightarrow{W} = \overrightarrow{U}.\overrightarrow{W} + \overrightarrow{V}.\overrightarrow{W}$

et C' et D' sont respectivement les projections orthogonales respectifs des points C et D sur la droite (AB) 'alors:





Preuve:

On a:

$$\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB}.(\overrightarrow{CC'} + \overrightarrow{C'D'} + \overrightarrow{D'D}) = \overrightarrow{AB}.\overrightarrow{CC'} + \overrightarrow{AB}.\overrightarrow{C'D'} + \overrightarrow{AB}.\overrightarrow{D'D}$$

Or
$$\overrightarrow{AB} \perp \overrightarrow{CC}$$
 $\supseteq \overrightarrow{AB} \perp \overrightarrow{DD}$ $\stackrel{\square}{\text{old}} \overrightarrow{AB}.\overrightarrow{CC} = 0$ $\supseteq \overrightarrow{AB}.\overrightarrow{DD} = 0$

D'où :
$$\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB}.\overrightarrow{C'D'}$$

3) Théorème d'ALKACHY:

Quels que soient les points A , B et C on :a

$$BC^2 = AB^2 + AC^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC}$$

(Théorème d'Alkachy)

Preuve:

On a:

$$\mathbf{BC}^2 = (\overrightarrow{\mathbf{AC}} - \overrightarrow{\mathbf{AB}})^2 = \mathbf{AC}^2 - 2\overrightarrow{\mathbf{AB}} \cdot \overrightarrow{\mathbf{AC}} + \mathbf{AB}^2$$

D'où :
$$BC^2 = (\overrightarrow{AC} - \overrightarrow{AB})^2 = AB^2 + AC^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC}$$

4) Théorème de la médiane :

Quels que soient les points A, B et C, si est le milieu I du sgment [BC], alors :

$$AB^2 + AC^2 = \frac{1}{2}BC^2 + 2AI^2$$
 (Théorème de la médiae)

Preuve:

D'une part, on a : $BC^2 = AB^2 + AC^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC}$, d'où : (1): $AB^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC} + AC^2 = BC^2$

D'autre part, I étant le milieu de [BC] donc : $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AI}$ d'où :

$$(\overrightarrow{AB} + \overrightarrow{AC})^2 = (2\overrightarrow{AI})^2 = 4AI^2 d'où$$
: (2): $AB^2 + 2\overrightarrow{AB} \cdot \overrightarrow{AC} + AC^2 = 4AI^2$

En faisant la somme membre à membre de relations (1) et (2) : $2AB^2 + 2AC^2 = BC^2 + 4AI^2$

D'où la relation : $AB^2 + AC^2 = \frac{1}{2}BC^2 + 2AI^2$ (théorème de la médiane)

III. **Analytique du Produit Scalaire:**

Dans tout ce qui suit, le plan est rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$

1) <u>Déterminants et vecteurs colinéaires :</u>

Définition:
$$\overrightarrow{U}(a,b)$$
 et $\overrightarrow{V}(c,d)$ det $(\overrightarrow{U},\overrightarrow{V})$ $\downarrow b$ $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$ tel que : $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$ = ad - bc

théorème:

- ✓ Les vecteurs \vec{U} et \vec{V} sont colinéaires si et seulement si, il existe un réel α tel que : $\vec{V} = \alpha . \vec{U}$.
- ✓ Les vecteurs \vec{U} et \vec{V} sont colinéaires si et seulement si $\det(\vec{U}, \vec{V}) = 0$.

2) Analytique du produit scalaire :

On considère les vecteurs $\overrightarrow{U}(a,b)$ et $\overrightarrow{V}(a',b')$.

	Le produit scalaire des vecteurs $\vec{U}(a,b)$ et $\vec{V}(a',b')$ est le nombre réel $\vec{U}.\vec{V}$ tel que:
	$\overrightarrow{\mathbf{U}}.\overrightarrow{\mathbf{V}} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a'} \\ \mathbf{b'} \end{pmatrix} = \mathbf{a}\mathbf{a'} + \mathbf{b}\mathbf{b'}$
Définiton	Le produit scalaire $\vec{U}.\vec{V}$ est un nombre algébrique.
Remarques	$\vec{\mathbf{U}}.\vec{\mathbf{V}} = \ \vec{\mathbf{U}}\ \times \ \vec{\mathbf{V}}\ \times \cos(\vec{\mathbf{U}},\vec{\mathbf{V}})$
	$\left\ \overrightarrow{\mathbf{U}} \right\ = \sqrt{\mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2}$
	$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$
Propriété	
	\vec{U} et \vec{V} sont orthogonaux si et seulement si $\vec{U}.\vec{V} = 0$

3) Calcul des distances :

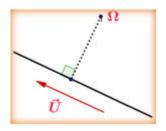
Distance entre les points A et B

$$A(x_A, y_A) \quad \text{et} \quad B(x_B, y_B)$$

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Distance entre le point Ω et la Droite (D)

$$\Omega(\mathbf{x}_{\Omega}, \mathbf{y}_{\Omega})$$
 et (Δ) : $\mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{c} = \mathbf{0}$
$$\mathbf{d}(\Omega, (\Delta)) = \frac{\left|\mathbf{a}\mathbf{x}_{\Omega} + \mathbf{b}\mathbf{y}_{\Omega} + \mathbf{c}\right|}{\sqrt{\mathbf{a}^2 + \mathbf{b}^2}}$$



4) Equation du cercle :

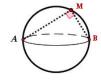
Equation du cercle défini par un centre et un rayon

Soit (C) le cercle de centre $\Omega(\mathbf{x}_{\Omega}, \mathbf{y}_{\Omega})$ et de rayon R

$$M(x,y) \in (S) \iff \Omega M = R \iff \Omega M^2 = R^2 \iff (x - x_{\Omega})^2 + (y - y_{\Omega})^2 = R^2$$

Equation du cercle défini par un diamètre

Soit (C) le cercle de diamètre [AB]

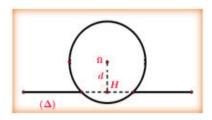


$$M(x, y, z) \in (S) \iff \overrightarrow{AM} \cdot \overrightarrow{BM} = 0$$

5) Position Relative d'un Cercle et d'une droite :

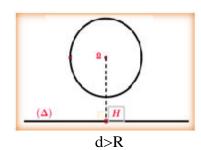
(C) est un cercle de centre Ω et de rayon R et (Δ) est une droite du plan.

H est la projection orthogonale Ω de sur (Δ) et d est la distance entre Ω et (Δ) .

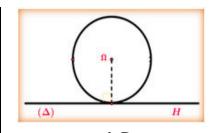


d<R La droite coupe le cercle en deux points

PROF: ATMANI NAJIB



Dans ce cas la droite no coupe pas le cercle.



d=R

Dans ce cas le cercle est tangent à la droite en H

1BAC SM BIOF

PROF : ATMANI NAJIB http://xriadiat.e-monsite.com